【題目】正四面體中,的中點(diǎn),是棱上一動(dòng)點(diǎn),的最小值為,則該四面體內(nèi)切球的體積為_____.

【答案】

【解析】

將正三角形和正三角形沿邊展開(kāi)后使它們?cè)谕黄矫鎯?nèi),即可得到三點(diǎn)共線(xiàn)時(shí),最小,在三角形中,由余弦定理可求得正四面體的邊長(zhǎng)為,將正四面體內(nèi)接于一個(gè)正方體中,利用體積差即可求得正四面體的體積為,再以?xún)?nèi)切球的球心為頂點(diǎn)可將正四面體分成四個(gè)等體積的三棱錐,利用等體積法即可求得內(nèi)切球的半徑為,問(wèn)題得解。

如下圖,正方體中作出一個(gè)正四面體

將正三角形和正三角形沿邊展開(kāi)后使它們?cè)谕黄矫鎯?nèi),如下圖:

要使得最小,則三點(diǎn)共線(xiàn),即:

設(shè)正四面體的邊長(zhǎng)為,在三角形中,由余弦定理可得:

,解得:

所以正方體的邊長(zhǎng)為2,正四面體的體積為:,

設(shè)四正面體內(nèi)切球的半徑為,由等體積法可得:,

整理得:,解得:,

所以該四面體內(nèi)切球的體積為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的短軸長(zhǎng)為,離心率為,過(guò)右焦點(diǎn)的直線(xiàn)與橢圓交于不同兩點(diǎn).線(xiàn)段的垂直平分線(xiàn)交軸于點(diǎn).

(1)求橢圓的方程;

(2)求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知某超市2018年12個(gè)月的收入與支出數(shù)據(jù)的折線(xiàn)圖如圖所示:

根據(jù)該折線(xiàn)圖可知,下列說(shuō)法錯(cuò)誤的是( )

A. 該超市2018年的12個(gè)月中的7月份的收益最高

B. 該超市2018年的12個(gè)月中的4月份的收益最低

C. 該超市2018年1-6月份的總收益低于2018年7-12月份的總收益

D. 該超市2018年7-12月份的總收益比2018年1-6月份的總收益增長(zhǎng)了90萬(wàn)元

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了得到函數(shù)的圖象,需對(duì)函數(shù)的圖象所作的變換可以為( )

A. 先將圖象上所有點(diǎn)的橫坐標(biāo)壓縮為原來(lái)的,縱坐標(biāo)不變,再向右平移個(gè)單位

B. 先向左平移個(gè)單位,再將圖象上所有點(diǎn)的橫坐標(biāo)壓縮為原來(lái)的,縱坐標(biāo)不變

C. 先向左平移個(gè)單位,再將圖象上所有點(diǎn)的橫坐標(biāo)壓縮為原來(lái)的,縱坐標(biāo)不變

D. 先向右平移個(gè)單位,再將圖象上所有點(diǎn)的橫坐標(biāo)伸長(zhǎng)為原來(lái)的3倍,縱坐標(biāo)不變

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知直線(xiàn)L: y=x+m與拋物線(xiàn)y2=8x交于A、B兩點(diǎn)(異于原點(diǎn)),

(1)若直線(xiàn)L過(guò)拋物線(xiàn)焦點(diǎn),求線(xiàn)段 |AB|的長(zhǎng)度;

(2)若OA⊥OB ,求m的值;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓,為坐標(biāo)原點(diǎn),為橢圓的左焦點(diǎn),離心率為,直線(xiàn)與橢圓相交于,兩點(diǎn).

(1)求橢圓的方程;

(2)若是弦的中點(diǎn),是橢圓上一點(diǎn),求的面積最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,四棱錐中,底面,面是直角梯形,為側(cè)棱上一點(diǎn).該四棱錐的俯視圖和側(cè)(左)視圖如圖2所示.

1)證明:平面;

2)線(xiàn)段上是否存在點(diǎn),使所成角的余弦值為?若存在,找到所有符合要求的點(diǎn),并求的長(zhǎng);若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】假設(shè)某種設(shè)備使用的年限(年)與所支出的維修費(fèi)用(萬(wàn)元)有以下統(tǒng)計(jì)資料:

使用年限

2

3

4

5

6

維修費(fèi)用

2

4

5

6

7

若由資料知對(duì)呈線(xiàn)性相關(guān)關(guān)系.試求:

1)求;

2)線(xiàn)性回歸方程;

3)估計(jì)使用10年時(shí),維修費(fèi)用是多少?

附:利用最小二乘法計(jì)算的值時(shí),可根據(jù)以下公式:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】數(shù)列中的項(xiàng)按順序可以排列成如圖的形式,第一行項(xiàng),排;第二行項(xiàng),從左到右分別排,;第三行項(xiàng),……以此類(lèi)推,設(shè)數(shù)列的前項(xiàng)和為,則滿(mǎn)足的最小正整數(shù)的值為( )

4,

4,43

4,43,4

4,43,4 , 4

A. B.

C. D.

查看答案和解析>>

同步練習(xí)冊(cè)答案