分析 (I)利用輔助角公式化簡f(x),求出內(nèi)層函數(shù)的范圍,結(jié)合三角函數(shù)的性質(zhì)即可答案;
(II)銳角△ABC的兩邊長分別是函數(shù)f(x)的最大值和最小值,可得根據(jù)值求出相應(yīng)的角度,結(jié)合和與差公式即可求解△ABC的面積.
解答 解:(Ⅰ)函數(shù)f(x)=sin2x-$\sqrt{3}cos2x,x∈[{\frac{π}{3},\frac{11π}{24}}]$.
化簡可得:f(x)=2sin(2x-$\frac{π}{3}$)
∵x∈[$\frac{π}{3}$,$\frac{11π}{24}$]
可得:$2x-\frac{π}{3}∈[\frac{π}{3},\frac{7π}{12}]$,
所以當(dāng)$2x-\frac{π}{3}=\frac{π}{2}$,即$x=\frac{5π}{12}$時(shí),f(x)取得最大值為 $f(\frac{5π}{12})=2$,
當(dāng)$2x-\frac{π}{3}=\frac{π}{3}$,即$x=\frac{π}{3}$時(shí),f(x)取得最小值為 $f(\frac{π}{3})=\sqrt{3}$,
函數(shù)f(x)的值域?yàn)閇$\sqrt{3}$,2].
(II)銳角△ABC的兩邊長分別是函數(shù)f(x)的最大值和最小值,設(shè)AB=c=$\sqrt{3}$,AC=b=2.
由正弦定理,$\frac{c}{sinC}=\frac{sinB}=2R$.
∴$\frac{\sqrt{3}}{sinC}=\frac{2}{sinB}=\frac{3\sqrt{2}}{2}$
∴sinB=$\frac{2\sqrt{2}}{3}$,sinC=$\frac{\sqrt{6}}{3}$.
△ABC是銳角三角形.
∴cosB=$\frac{1}{3}$,cosC=$\frac{\sqrt{3}}{3}$.
可得sinA=sin(B+C)=sinBcosC+cosBsinC=$\frac{\sqrt{6}}{3}$.
那么:△ABC的面積S=$\frac{1}{2}$bcsinA=$\sqrt{2}$.
點(diǎn)評(píng) 本題考查了三角函數(shù)的化解能力和性質(zhì)的運(yùn)用,正弦定理的運(yùn)用和計(jì)算,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -18 | B. | -6 | C. | 0 | D. | 18 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com