6.下列各函數(shù)中,圖象經(jīng)過點($\frac{π}{2}$,-1)的是( 。
A.y=sinxB.y=cosxC.y=-sinxD.y=-cosx

分析 利用正弦函數(shù)和余弦函數(shù)的圖象和性質(zhì)求解.

解答 解:在A中,∵sin$\frac{π}{2}$=1,∴y=sinx的圖象不經(jīng)過點($\frac{π}{2}$,-1),故A錯誤;
在B中,∵cos$\frac{π}{2}$=0,∴y=cosx的圖象不經(jīng)過點($\frac{π}{2}$,-1),故B錯誤;
在C中,∵sin$\frac{π}{2}$=1,∴y=-sinx的圖象不經(jīng)過點($\frac{π}{2}$,-1),故C正確;
在D中,∵cos$\frac{π}{2}$=0,∴y=cosx的圖象不經(jīng)過點($\frac{π}{2}$,-1),故D錯誤.
故選:C.

點評 本題考查圖象是否過定點的判斷,是基礎(chǔ)題,解題時要認(rèn)真審題,注意正弦函數(shù)與余弦函數(shù)的性質(zhì)的合理運用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知x≤1,比較3x3與3x2-x+1的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知sinx=-$\frac{1}{3}$.
(1)若x∈[0,2π],求角x的取值集合;
(2)若x∈R,求角x的取值集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.證明:1×22-2×33+…+(2n-1)(2n)2-2n(2n+1)2=-n(n+1)(4n+3)(n∈N+

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知函數(shù)f(x)=2cos(πx)•cos2$\frac{φ}{2}$-sin(πx)•sinφ-cos(πx)(0≤φ<$\frac{π}{2}$)的部分圖象如圖所示,則圖中的x0的值為(  )
A.$\frac{5}{6}$B.$\frac{5}{4}$C.$\frac{5}{2}$D.$\frac{5}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知$\overrightarrow{a}$=(3,x),$\overrightarrow$=(7,12),且$\overrightarrow{a}⊥\overrightarrow$,則x=( 。
A.-$\frac{7}{4}$B.$\frac{7}{4}$C.-$\frac{7}{3}$D.$\frac{7}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2016-2017學(xué)年廣東清遠(yuǎn)三中高二上學(xué)期第一次月考數(shù)學(xué)(理)試卷(解析版) 題型:選擇題

六個面都是平行四邊形的四棱柱稱為平行六面體.如圖甲,在平行四邊形ABCD中,有AC2+BD2=2(AB2+AD2),那么在圖乙所示的平行六面體ABCD-A1B1C1D1中,等于( )

A.2(AB2+AD2+

B.3(AB2+AD2+

C.4(AB2+AD2+

D.4(AB2+AD2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知函數(shù)f(x)=2cosx(sinx-cosx)+1,x∈R.
(1)求函數(shù)f(x)的最小正周期;
(2)求函數(shù)f(x)在區(qū)間$[{0,\frac{π}{2}}]$上的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.某程序框圖如圖,當(dāng)輸入x的值為27時,則輸出y的值為2.

查看答案和解析>>

同步練習(xí)冊答案