14.證明:1×22-2×33+…+(2n-1)(2n)2-2n(2n+1)2=-n(n+1)(4n+3)(n∈N+

分析 利用數(shù)學(xué)歸納法證明即可.

解答 證明:①當(dāng)n=1時,左邊=1×22-2×32=-14,
右邊=-(1+1)(4×1+3)=-14,
等時成立;
②假設(shè)當(dāng)n=k(k≥1)時,有1×22-2×32+…+(2k-1)(2k)2-2k(2k+1)2=-k(k+1)(4k+3),
則當(dāng)n=k+1時,1×22-2×32+…+(2k-1)(2k)2-2k(2k+1)2+(2k+1)(2k+2)2-2(k+1)(2k+3)2
=-k(k+1)(4k+3)+(2k+1)(2k+2)2-2(k+1)(2k+3)2
=-k(k+1)(4k+3)+(k+1)[4(2k+1)(k+1)-2(2k+3)2]
=-k(k+1)(4k+3)-2(k+1)(6k+7)
=-(k+1)(4k2+15k+14)
=-(k+1)(k+2)(4k+7),
即當(dāng)n=k+1時,等式也成立;
由①②可知等時成立.

點評 本題考查數(shù)學(xué)歸納法,考查運算求解能力,注意解題方法的積累,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知A是函數(shù)f(x)=sin(ωx+φ)(ω>0,0<φ<2π)圖象上的一個最高點,B,C是f(x)圖象上相鄰的兩個對稱中心,且△ABC的面積為$\frac{1}{2}$,若存在常數(shù)M(M>0),使得f(x+M)=Mf(-x),則該函數(shù)的解析式是f(x)=-sinπx.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.試求一個正數(shù),使它的整數(shù)部分是小數(shù)部分和這個正數(shù)自身的等比中項.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知△ABC的三內(nèi)角A,B,C滿足sin(π-A)=$\sqrt{2}$cos(B-$\frac{π}{2}$),$\sqrt{3}$cosA=-$\sqrt{2}$cos(π+B),求角A,B,C的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知下列數(shù)列:
(1)2,4,8,12;
(2)0,$\frac{1}{2}$,$\frac{2}{3}$,…,$\frac{n-1}{n}$,…;
(3)1,$\frac{1}{2}$,$\frac{1}{4}$,…,$\frac{1}{{2}^{n}-1}$…;
(4)1,-$\frac{2}{3}$,$\frac{3}{5}$,…,$\frac{(-1)^{n-1}•n}{2n-1}$,…;
(5)1,0,-1,…,sin$\frac{nπ}{2}$,…;
(6)6,6,6,6,6,6.
其中,有窮數(shù)列是(1)(6),無窮數(shù)列是(2)(3)(4)(5),遞增數(shù)列是(1)(2),遞減數(shù)列是(3),常數(shù)列是(6),擺動數(shù)列是(4)(5).(將合理的序號填在橫線上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.種植某種樹苗,成活率為0.9,若種植這種樹苗5棵,求恰好成活4棵的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.下列各函數(shù)中,圖象經(jīng)過點($\frac{π}{2}$,-1)的是( 。
A.y=sinxB.y=cosxC.y=-sinxD.y=-cosx

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2016-2017學(xué)年廣東清遠(yuǎn)三中高二上學(xué)期第一次月考數(shù)學(xué)(理)試卷(解析版) 題型:選擇題

如圖所示,直四棱柱內(nèi)接于半徑為的半球,四邊形為正方形,則該四棱柱的體積最大時,的長為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.在一次數(shù)學(xué)考試中,數(shù)學(xué)課代表將他們班50名同學(xué)的考試成績按如下方式進(jìn)行統(tǒng)計得到如下頻數(shù)分布表(滿分為100分)
 成績[40,50)[50,60)[60,70)[70,80)[80,90)[90,100)
 人數(shù) 215 15 
(Ⅰ)在答題卡上作出這些數(shù)據(jù)中的頻率分布直方圖;
(Ⅱ)估計該班學(xué)生數(shù)學(xué)成績的中位數(shù)和平均值;
(Ⅲ)若按照學(xué)生成績在區(qū)間[0,60),[60,80),[80,100)內(nèi),分別認(rèn)定為不及格,及格,優(yōu)良三個等次,用分層抽樣的方法從中抽取一個容量為5的樣本,計算:從該樣本中任意抽取2名學(xué)生,至少有一名學(xué)生成績屬于及格等次的概率.

查看答案和解析>>

同步練習(xí)冊答案