11.已知$\overrightarrow{a}$=(3,x),$\overrightarrow$=(7,12),且$\overrightarrow{a}⊥\overrightarrow$,則x=(  )
A.-$\frac{7}{4}$B.$\frac{7}{4}$C.-$\frac{7}{3}$D.$\frac{7}{3}$

分析 根據(jù)平面向量數(shù)量積的坐標運算,列出方程即可求出x的值.

解答 解:∵$\overrightarrow{a}$=(3,x),$\overrightarrow$=(7,12),且$\overrightarrow{a}⊥\overrightarrow$,
∴$\overrightarrow{a}$•$\overrightarrow$=3×7-12x=0
解得x=$\frac{7}{4}$.
故選:B.

點評 本題考查了平面向量數(shù)量積的坐標運算問題,是基礎題目.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

5.下列各角是第幾象限的角:
260°;300°;390°;-90°;-120°;-230°;-330°.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.已知△ABC的三內(nèi)角A,B,C滿足sin(π-A)=$\sqrt{2}$cos(B-$\frac{π}{2}$),$\sqrt{3}$cosA=-$\sqrt{2}$cos(π+B),求角A,B,C的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.種植某種樹苗,成活率為0.9,若種植這種樹苗5棵,求恰好成活4棵的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.下列各函數(shù)中,圖象經(jīng)過點($\frac{π}{2}$,-1)的是( 。
A.y=sinxB.y=cosxC.y=-sinxD.y=-cosx

查看答案和解析>>

科目:高中數(shù)學 來源:2016-2017學年廣東清遠三中高二上學期第一次月考數(shù)學(理)試卷(解析版) 題型:選擇題

若一個四棱錐底面為正方形, 頂點在底面的射影為正方形的中心, 且該四棱錐的體積為,當其外接球的體積最小時, 它的高為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源:2016-2017學年廣東清遠三中高二上學期第一次月考數(shù)學(理)試卷(解析版) 題型:選擇題

如圖所示,直四棱柱內(nèi)接于半徑為的半球,四邊形為正方形,則該四棱柱的體積最大時,的長為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.在如圖所示的幾何體中.EA⊥平面ABC,DB⊥平面ABC,AC⊥BC,且AC=BC=BD=2AE=2,M是AB的中點.
(Ⅰ)求證:DM⊥平面EMC;
(Ⅱ)求多面體ABCDE的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.已知圓M:${x^2}+{y^2}-2\sqrt{3}x=0$的圓心是橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)的右焦點,過橢圓的左焦點和上頂點的直線與圓M相切.
(I)求橢圓C的方程;
(Ⅱ)橢圓C上有兩點A(x1,y1)、B(x2,y2),OA、OB斜率之積為$-\frac{1}{4}$,求$x_1^2+x_2^2$的值.

查看答案和解析>>

同步練習冊答案