【題目】已知數(shù)列{an}的前n項(xiàng)和為Sn , 且對(duì)任意正整數(shù)n都有an= Sn+2成立.若bn=log2an , 則b1008=( )
A.2017
B.2016
C.2015
D.2014
【答案】A
【解析】解:在an= Sn+2中令n=1得a1=8, 因?yàn)閷?duì)任意正整數(shù)n,都有an= Sn+2成立,所以an+1= Sn+1+2成立,
兩式相減得an+1﹣an= an+1 ,
所以an+1=4an ,
又a1≠0,
所以數(shù)列{an}為等比數(shù)列,
所以an=84n﹣1=22n+1 ,
所以bn=log2an=2n+1,
所以b1008=2017,
故選:A
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解數(shù)列的通項(xiàng)公式的相關(guān)知識(shí),掌握如果數(shù)列an的第n項(xiàng)與n之間的關(guān)系可以用一個(gè)公式表示,那么這個(gè)公式就叫這個(gè)數(shù)列的通項(xiàng)公式.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,AD∥BC,∠ADC=∠PAB=90°,BC=CD= AD.E為棱AD的中點(diǎn),異面直線PA與CD所成的角為90°.
(Ⅰ)在平面PAB內(nèi)找一點(diǎn)M,使得直線CM∥平面PBE,并說明理由;
(Ⅱ)若二面角P﹣CD﹣A的大小為45°,求直線PA與平面PCE所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線l:y=﹣x+3與橢圓C:mx2+ny2=1(n>m>0)有且只有一個(gè)公共點(diǎn)P(2,1).
(I)求橢圓C的標(biāo)準(zhǔn)方程;
(II)若直線l′:y=﹣x+b交C于A,B兩點(diǎn),且PA⊥PB,求b的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè) ,已知0<a<b<c,且f(a)f(b)f(c)<0,若x0是函數(shù)f(x)的一個(gè)零點(diǎn),則下列不等式不可能成立的是( )
A.x0<a
B.0<x0<1
C.b<x0<c
D.a<x0<b
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知:向量 =( ,0),O為坐標(biāo)原點(diǎn),動(dòng)點(diǎn)M滿足:| + |+| ﹣ |=4.
(1)求動(dòng)點(diǎn)M的軌跡C的方程;
(2)已知直線l1 , l2都過點(diǎn)B(0,1),且l1⊥l2 , l1 , l2與軌跡C分別交于點(diǎn)D,E,試探究是否存在這樣的直線使得△BDE是等腰直角三角形.若存在,指出這樣的直線共有幾組(無需求出直線的方程);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義在R上的函數(shù)f(x)滿足f(x+2)= f(x),當(dāng)x∈[0,2]時(shí),f(x)= ,函數(shù)g(x)=x3+3x2+m.若對(duì)任意s∈[﹣4,﹣2),存在t∈[﹣4,﹣2),不等式f(s)﹣g(t)≥0成立,則實(shí)數(shù)m的取值范圍是( )
A.(﹣∞,﹣12]
B.(﹣∞,14]
C.(﹣∞,﹣8]
D.(﹣∞, ]
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系xOy中,曲線C1的參數(shù)方程為 (t為參數(shù)),以原點(diǎn)O為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程為ρ2=4 ρsin(θ+ )﹣4.
(Ⅰ)求曲線C2的直角坐標(biāo)方程,并指出其表示何種曲線;
(Ⅱ)若曲線C1與曲線C2交于A、B兩點(diǎn),求|AB|的最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知橢圓C: (a>b>0)的離心率為 ,以橢圓C的左頂點(diǎn)T為圓心作圓T:(x+2)2+y2=r2(r>0),設(shè)圓T與橢圓C交于點(diǎn)M與點(diǎn)N.
(1)求橢圓C的方程;
(2)求 的最小值;
(3)設(shè)點(diǎn)P是橢圓C上異于M,N的任意一點(diǎn),且直線MP,NP分別與x軸交于點(diǎn)R,S,O為坐標(biāo)原點(diǎn),求證:|OR||OS|是定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知左、右焦點(diǎn)分別為F1(﹣c,0),F(xiàn)2(c,0)的橢圓 過點(diǎn) ,且橢圓C關(guān)于直線x=c對(duì)稱的圖形過坐標(biāo)原點(diǎn).
(I)求橢圓C的離心率和標(biāo)準(zhǔn)方程.
(II)圓 與橢圓C交于A,B兩點(diǎn),R為線段AB上任一點(diǎn),直線F1R交橢圓C于P,Q兩點(diǎn),若AB為圓P1的直徑,且直線F1R的斜率大于1,求|PF1||QF1|的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com