【題目】設 ,已知0<a<b<c,且f(a)f(b)f(c)<0,若x0是函數(shù)f(x)的一個零點,則下列不等式不可能成立的是( )
A.x0<a
B.0<x0<1
C.b<x0<c
D.a<x0<b
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=x2﹣alnx(a>0)的最小值是1.
(Ⅰ)求a;
(Ⅱ)若關于x的方程f2(x)ex﹣6mf(x)+9me﹣x=0在區(qū)間[1,+∞)有唯一的實根,求m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列{an}中,a1=2,a2=4,設Sn為數(shù)列{an}的前n項和,對于任意的n>1,n∈N* , Sn+1+Sn﹣1=2(Sn+1).
(1)求數(shù)列{an}的通項公式;
(2)設bn= ,求{bn}的前n項和Tn .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在△ABC中,內(nèi)角A,B,C的對邊分別為a,b,c,若 = ,則這個三角形必含有( )
A.90°的內(nèi)角
B.60°的內(nèi)角
C.45°的內(nèi)角
D.30°的內(nèi)角
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知f(x)=ax﹣lnx,x∈(0,e],g(x)= ,其中e是自然對數(shù)的底數(shù),a∈R.
(Ⅰ)當a=1時,求函數(shù)f(x)的單調(diào)區(qū)間和極值;
(Ⅱ)求證:在(Ⅰ)的條件下,f(x)>g(x)+ ;
(Ⅲ)是否存在實數(shù)a,使f(x)的最小值是3,若存在,求出a的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某批發(fā)市場對某種商品的周銷售量(單位:噸)進行統(tǒng)計,最近100周的統(tǒng)計結(jié)果如下表所示:
周銷售量 | 2 | 3 | 4 |
頻數(shù) | 20 | 50 | 30 |
(1)根據(jù)上面統(tǒng)計結(jié)果,求周銷售量分別為2噸,3噸和4噸的頻率;
(2)已知每噸該商品的銷售利潤為2千元,ξ表示該種商品兩周銷售利潤的和(單位:千元),若以上述頻率作為概率,且各周的銷售量相互獨立,求ξ的分布列和數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列{an}的前n項和為Sn , 且對任意正整數(shù)n都有an= Sn+2成立.若bn=log2an , 則b1008=( )
A.2017
B.2016
C.2015
D.2014
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,AC是圓O的直徑,點B在圓O上,∠BAC=30°,BM⊥AC交AC于點M,EA⊥平面ABC,F(xiàn)C∥EA,AC=4,EA=3,F(xiàn)C=1.
(Ⅰ)證明:EM⊥BF;
(Ⅱ)求平面BEF與平面ABC所成的銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】若數(shù)列{an}是公差為2的等差數(shù)列,數(shù)列{bn}滿足b1=1,b2=2,且anbn+bn=nbn+1 .
(Ⅰ)求數(shù)列{an}、{bn}的通項公式;
(Ⅱ)設數(shù)列{cn}滿足cn= ,數(shù)列{cn}的前n項和為Tn , 若不等式(﹣1)nλ<Tn+ 對一切n∈N* , 求實數(shù)λ的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com