15.復(fù)數(shù)$\frac{2i}{1-i}$=(  )
A.1+iB.1-iC.-1+iD.-1-i

分析 直接利用復(fù)數(shù)代數(shù)形式的乘除運(yùn)算化簡得答案.

解答 解:$\frac{2i}{1-i}$=$\frac{2i(1+i)}{(1-i)(1+i)}=\frac{2i(1+i)}{2}=-1+i$.
故選:C.

點(diǎn)評(píng) 本題考查復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,是基礎(chǔ)的計(jì)算題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.函數(shù)f(x)=log${\;}_{\frac{1}{2}}}$(x2-6x+5)的單調(diào)遞減區(qū)間是(5,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知復(fù)數(shù)z=-1+i,則$\frac{1}{z}$=(  )
A.-$\frac{1}{2}-\frac{1}{2}i$B.-$\frac{1}{2}+\frac{1}{2}i$C.$\frac{1}{2}+\frac{1}{2}i$D.$\frac{1}{2}-\frac{1}{2}i$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.若函數(shù)f(x)滿足:存在非零常數(shù)a,使f(x)=-f(2a-x),則稱f(x)為“準(zhǔn)奇函數(shù)”,給出下列函數(shù):①f(x)=x2;②f(x)=(x-1)3;③f(x)=ex-1;④f(x)=cosx.則以上函數(shù)中是“準(zhǔn)奇函數(shù)”的序號(hào)是②④.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.己知圓C1:x2+y2+2x+8y-8=0,圓C2:x2+y2-4x-4y-2=0,則圓C1與圓C2的位置關(guān)系為(  )
A.外切B.內(nèi)切C.相交D.相離

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.要得到函數(shù)$y=cos(4x-\frac{π}{3})$圖象,只需將函數(shù)$y=sin(\frac{π}{2}+4x)$圖象( 。
A.向左平移$\frac{π}{12}$個(gè)單位B.向右平移$\frac{π}{12}$個(gè)單位
C.向左平移$\frac{π}{3}$個(gè)單位D.向右平移$\frac{π}{3}$個(gè)單位

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.實(shí)數(shù)x,y,k滿足$\left\{\begin{array}{l}x+y-3≥0\\ x-y+1≥0\\ x≤k\end{array}\right.$,z2=x2+y2,若z2的最大值為13,則k的值為( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知全集U=R,A={x|$\frac{1}{2}$≤2x≤8},B={x|x>0},C={x|m<x<m+2}
(Ⅰ)求A∩(∁UB);
(Ⅱ)若A∩C=∅,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知函數(shù)f(x)=x2-3x的定義域?yàn)閧1,2,3},則f(x)的值域?yàn)閧-2,0}.

查看答案和解析>>

同步練習(xí)冊(cè)答案