【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù)),以原點(diǎn)為極點(diǎn), 軸正半軸為極軸建立極坐標(biāo)系,曲線的方程為,定點(diǎn),點(diǎn)是曲線上的動(dòng)點(diǎn), 的中點(diǎn).

(1)求點(diǎn)的軌跡的直角坐標(biāo)方程;

(2)已知直線軸的交點(diǎn)為,與曲線的交點(diǎn)為,若的中點(diǎn)為,求的長(zhǎng).

【答案】(1) (2)

【解析】試題分析:1)求出曲線C1的直角坐標(biāo)方程為設(shè)點(diǎn)Nx′,y′),Qx,y),由中點(diǎn)坐標(biāo)公式得,由此能求出點(diǎn)Q的軌跡C2的直角坐標(biāo)方程.2的坐標(biāo)為,設(shè)的參數(shù)方程為,( 為參數(shù))代入曲線的直角坐標(biāo)方程得根據(jù)韋達(dá)定理,利用t的參數(shù)意義得

即可得解.

試題解析:

(1)由題意知,曲線的直角坐標(biāo)方程為.

設(shè)點(diǎn), ,由中點(diǎn)坐標(biāo)公式得

代入中,得點(diǎn)的軌跡的直角坐標(biāo)方程為.

(2)的坐標(biāo)為,設(shè)的參數(shù)方程為,( 為參數(shù))代入曲線的直角坐標(biāo)方程得: ,

設(shè)點(diǎn)對(duì)應(yīng)的參數(shù)分別為,

, , .

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在正四棱柱中,,的中點(diǎn).

1)求證:平面

2)求證:平面;

3)若上的動(dòng)點(diǎn),使直線與平面所成角的正弦值是,求的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,以原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系.已知直線的極坐標(biāo)方程為,曲線的極坐標(biāo)方程為

1)寫(xiě)出直線和曲線的直角坐標(biāo)方程;

2)過(guò)動(dòng)點(diǎn)且平行于的直線交曲線兩點(diǎn),若,求動(dòng)點(diǎn)到直線的最近距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

1)若,求的最大值;

2)當(dāng)時(shí),討論極值點(diǎn)的個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,已知直線的參數(shù)方程:為參數(shù)),以原點(diǎn)為極點(diǎn),軸非負(fù)半軸為極軸(取相同單位長(zhǎng)度)建立極坐標(biāo)系,圓的極坐標(biāo)方程為:

1)將直線的參數(shù)方程化為普通方程,圓的極坐標(biāo)方程化為直角坐標(biāo)方程;

2)求圓上的點(diǎn)到直線的距離的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】24屆冬季奧林匹克運(yùn)動(dòng)會(huì)將于2022年在北京-張家口舉行,為了搞好接待工作,組委會(huì)在某學(xué)院招募了12名男志愿者和18名女志愿者.將這30名志愿者的身高變成如右所示的莖葉圖(單位: ):若身高在以上(包括)定義為高個(gè)子,身高在以下(不包括)定義為非高個(gè)子,且只有女高個(gè)子才能擔(dān)任禮儀小姐

1)如果分層抽樣的方法從高個(gè)子非高個(gè)子中提取5人,再?gòu)倪@5人中選2人,那么至少有一人是高個(gè)子的概率是多少?

2)若從所有高個(gè)子中選3名志愿者,用表示所選志愿者中能擔(dān)任禮儀小姐的人數(shù),試寫(xiě)出的分布列,并求的數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】目前,新冠病毒引發(fā)的肺炎疫情在全球肆虐,為了止損,某地一水果店老板利用抖音直播賣(mài)貨,經(jīng)過(guò)一段時(shí)間對(duì)一種水果的銷(xiāo)售情況進(jìn)行統(tǒng)計(jì),得到天的數(shù)據(jù)如下:

銷(xiāo)售單價(jià)(元/

銷(xiāo)售量

1)建立關(guān)于的回歸直線方程;

2)該水果店開(kāi)展促銷(xiāo)活動(dòng),當(dāng)該水果銷(xiāo)售單價(jià)為/時(shí),其銷(xiāo)售量達(dá)到,若由回歸直線方程得到的預(yù)測(cè)數(shù)據(jù)與此次促銷(xiāo)活動(dòng)的實(shí)際數(shù)據(jù)之差的絕對(duì)值不超過(guò),則認(rèn)為所得到的回歸直線方程是理想的,試問(wèn):(1)中得到的回歸直線方程是否理想?

3)根據(jù)(1)的結(jié)果,若該水果成本是/,銷(xiāo)售單價(jià)為何值時(shí)(銷(xiāo)售單價(jià)不超過(guò)/),該水果店利潤(rùn)的預(yù)計(jì)值最大?

參考公式:回歸直線方程,其中,.

參考數(shù)據(jù):,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】20191212日我國(guó)出現(xiàn)了新型冠狀病毒所感染的肺炎,新型冠狀病毒的傳染性極強(qiáng).下圖是2020126號(hào)到217號(hào)全國(guó)/湖北/非湖北新增新型冠狀病毒感染確診病例對(duì)比圖,根據(jù)圖象下列判斷錯(cuò)誤的是(

A.該時(shí)段非湖北新增感染確診病例比湖北少

B.全國(guó)新增感染確診病例平均數(shù)先增后減

C.2.12全國(guó)新增感染確診病例明顯增加,主要是由湖北引起的

D.2.12全國(guó)新增感染確診病例數(shù)突然猛增,不會(huì)影響該段時(shí)期全國(guó)新增病例數(shù)的中位數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示的幾何體中,四邊形是正方形,四邊形是梯形,,且,平面平面ABC.

1)求證:平面平面;

2)若,求幾何體的體積.

查看答案和解析>>

同步練習(xí)冊(cè)答案