【題目】如圖所示的幾何體中,四邊形是正方形,四邊形是梯形,,且,,平面平面ABC.
(1)求證:平面平面;
(2)若,,求幾何體的體積.
【答案】(1)證明見解析(2)
【解析】
(1)取BC的中點E,連接,可證明平面,根據(jù)可證明四邊形為平行四邊形,從而可證平面,進(jìn)而證明平面平面.(2)將所求幾何體分割為四棱錐和直三棱柱兩部分,通過四棱錐和棱柱的體積分別計算求和可得幾何體的體積.
解:(1)取BC的中點E,連接,∵,∴
∵是正方形,∴,又平面平面ABC,∴平面ABC,
又∵平面ABC,∴
又∵,平面,,∴平面
∵,∴四邊形為平行四邊形,∴,
∴四邊形為平行四邊形
∴,∴平面
又平面,∴平面平面
(2)由(1)知所求幾何體為四棱錐和直三棱柱的組合體
∵,,,平面,∴平面,
∴四棱錐的體積
直三棱柱的體積
∴所求幾何體的體積
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨著移動互聯(lián)網(wǎng)的發(fā)展,越來越多的人習(xí)慣用手機(jī)應(yīng)用程序(簡稱app)獲取新聞資訊.為了解用戶對某款新聞類app的滿意度,隨機(jī)調(diào)查了300名用戶,調(diào)研結(jié)果如表:(單位:人)
青年人 | 中年人 | 老年人 | |
滿意 | 60 | 70 | x |
一般 | 55 | 25 | y |
不滿意 | 25 | 5 | 10 |
(1)從所有參與調(diào)研的人中隨機(jī)選取1人,估計此人“不滿意”的概率;
(2)從參與調(diào)研的青年人和中年人中各隨機(jī)選取1人,估計恰有1人“滿意”的概率;
(3)現(xiàn)需從參與調(diào)研的老年人中選擇6人作進(jìn)一步訪談,若在“滿意”、“一般”、“不滿意”的老年人中各取2人,這種抽樣是否合理?說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=|x+m|+|2x-1|.
(1)當(dāng)m=-1時,求不等式f(x)≤2的解集;
(2)若f(x)≤|2x+1|的解集包含,求m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系xOy中,曲線E的參數(shù)方程為(為參數(shù)),以O為極點,x軸非負(fù)半軸為極軸建立極坐標(biāo)系,直線,的極坐標(biāo)方程分別為,,交曲線E于點A,B,交曲線E于點C,D.
(1)求曲線E的普通方程及極坐標(biāo)方程;
(2)求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】羽毛球比賽中,首局比賽由裁判員采用拋球的方法決定誰先發(fā)球,在每回合爭奪中,贏方得1分且獲得發(fā)球權(quán).每一局中,獲勝規(guī)則如下:①率先得到21分的一方贏得該局比賽;②如果雙方得分出現(xiàn),需要領(lǐng)先對方2分才算該局獲勝;③如果雙方得分出現(xiàn),先取得30分的一方該局獲勝.現(xiàn)甲、乙兩名運(yùn)動員進(jìn)行對抗賽,在每回合爭奪中,若甲發(fā)球時,甲得分的概率為;乙發(fā)球時,甲得分的概率為.
(Ⅰ)若,記“甲以贏一局”的概率為,試比較與的大小;
(Ⅱ)根據(jù)對以往甲、乙兩名運(yùn)動員的比賽進(jìn)行數(shù)據(jù)分析,得到如下列聯(lián)表部分?jǐn)?shù)據(jù).若不考慮其它因素對比賽的影響,并以表中兩人發(fā)球時甲得分的頻率作為,的值.
甲得分 | 乙得分 | 總計 | |
甲發(fā)球 | 50 | 100 | |
乙發(fā)球 | 60 | 90 | |
總計 | 190 |
①完成列聯(lián)表,并判斷是否有95%的把握認(rèn)為“比賽得分與接、發(fā)球有關(guān)”?
②已知在某局比中,雙方戰(zhàn)成,且輪到乙發(fā)球,記雙方再戰(zhàn)回合此局比賽結(jié)束,求的分布列與期望.
參考公式:,其中.
臨界值表供參考:
0.15 | 0.10 | 0.05 | 0.010 | 0.001 | |
2.072 | 2.706 | 3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,底面為直角梯形,其中∥,是的中點,和交于點,且平面.
(1)證明:平面平面;
(2)求直線與平面所成角的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,CM,CN為某公園景觀湖胖的兩條木棧道,∠MCN=120°,現(xiàn)擬在兩條木棧道的A,B處設(shè)置觀景臺,記BC=a,AC=b,AB=c(單位:百米)
(1)若a,b,c成等差數(shù)列,且公差為4,求b的值;
(2)已知AB=12,記∠ABC=θ,試用θ表示觀景路線A-C-B的長,并求觀景路線A-C-B長的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com