分析 由函數(shù)f(x)=-lnx+ax2+bx-a-2b有兩個(gè)極值點(diǎn)x1,x2,可得2ax2+bx-1=0有兩個(gè)不相等的正根,必有△=b2+8a>0.而方程2a(f(x))2+bf(x)-1=0的△1=△>0,可知此方程有兩解且f(x)=x1或x2.再分別討論利用平移變換即可解出方程f(x)=x1或f(x)=x2解的個(gè)數(shù).
解答 解:∵函數(shù)f(x)=-lnx+ax2+bx-a-2b有兩個(gè)極值點(diǎn)x1,x2,
∴f′(x)=-$\frac{1}{x}$+2ax+b=$\frac{2a{x}^{2}+bx-1}{x}$,
即為2ax2+bx-1=0有兩個(gè)不相等的正根,
∴△=b2+8a>0.∵x1<x2,∴解得∴x1=$\frac{-b+\sqrt{^{2}+8a}}{4a}$,x2=$\frac{-b-\sqrt{^{2}+8a}}{4a}$(a<0).
而方程2a(f(x))2+bf(x)-1=0的△1=△>0,
∴此方程有兩解且f(x)=x1或x2
即有0<x1<x2,f(x2)>0.
①把y=f(x)向下平移x2個(gè)單位即可得到y(tǒng)=f(x)-x2的圖象,
∵f(x2)=x2,可知方程f(x)=x2有三解.
②把y=f(x)向下平移x1個(gè)單位即可得到y(tǒng)=f(x)-x1的圖象,
∵f(x2)=x2,∴f(x2)-x1>0,可知方程f(x)=x1有兩解.
綜上①②可知:方程f(x)=x1或f(x)=x2共有5個(gè)實(shí)數(shù)解.
即關(guān)于x的方程2a(f(x))2+bf(x)-1=0的共有5不同實(shí)根.
故答案為:5.
點(diǎn)評 本題綜合考查了利用導(dǎo)數(shù)研究函數(shù)得單調(diào)性、極值及方程解的個(gè)數(shù)、平移變換等基礎(chǔ)知識,考查了圖象平移的思想方法、推理能力、計(jì)算能力、分析問題和解決問題的能力.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com