分析 (1)事件丙獲得1萬元為事件A,若A發(fā)生,則甲乙二人獲得的金額分別為1萬元,2萬元,或2萬元,1萬元,由此能求出丙獲得1萬元獎金的概率.
(2)甲、乙1萬元和2萬元獎金的概率為p1,p2,甲、乙獲得的獎金數(shù)額的數(shù)學(xué)期望值為p1+2p2,丙獲得獎金數(shù)額的數(shù)學(xué)期望為$2{{p}_{1}}^{2}+2{p}_{1}{p}_{2}$,由此列出方程組,能求出P1,P2的值.
解答 解:(1)甲、乙二人得1萬元和2萬元的概率都是$\frac{1}{2}$,
事件丙獲得1萬元為事件A,
若A發(fā)生,則甲乙二人獲得的金額分別為1萬元,2萬元,或2萬元,1萬元,
∴丙獲得1萬元獎金的概率:
P(A)=$\frac{1}{2}×\frac{1}{2}+\frac{1}{2}×\frac{1}{2}=\frac{1}{2}$.
(2)∵甲、乙1萬元和2萬元獎金的概率為p1,p2,
∴甲、乙獲得的獎金數(shù)額的數(shù)學(xué)期望值為p1+2p2,
丙獲得獎金數(shù)額的數(shù)學(xué)期望為$2{{p}_{1}}^{2}+2{p}_{1}{p}_{2}$,
依題意,得$\left\{\begin{array}{l}{{p}_{1}+{p}_{2}=1}\\{{p}_{1}+2{p}_{2}=2{{p}_{1}}^{2}+2{p}_{1}{p}_{2}}\end{array}\right.$,
解得${p}_{1}=\frac{2}{3}$,p2=$\frac{1}{3}$.
點(diǎn)評 本題考查概率的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意相互獨(dú)立事件概率乘法公式和互斥事件概率加法公式的合理運(yùn)用.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ①、②、③均直線 | B. | 只有②是直線 | C. | ①、②是直線,③是圓 | D. | ②是直線,①、③是圓 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | $\sqrt{2}$ | C. | $\sqrt{3}$ | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {2,0} | B. | {2,1,0} | C. | {3,2,0} | D. | {3,2,1,0} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{18}{25}$ | B. | $\frac{6}{25}$ | C. | $\frac{3}{5}$ | D. | $\frac{9}{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-∞,-2) | B. | (-2,-1) | C. | (-1,1) | D. | (-∞,0) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2x-y-5=0 | B. | 2x-y+1=0 | C. | x+2y-7=0 | D. | x+2y-5=0 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com