【題目】已知函數(shù)f(x)是定義在區(qū)間[﹣1,1]上的奇函數(shù),且f(1)=1,若對于任意的m、n∈[﹣1,1]有 .
(1)判斷并證明函數(shù)的單調(diào)性;
(2)解不等式 ;
(3)若f(x)≤﹣2at+2對于任意的x∈[﹣1,1],a∈[﹣1,1]恒成立,求實數(shù)t的取值范圍.
【答案】
(1)函數(shù)f(x)在區(qū)間[﹣1,1]上是增函數(shù):
證明:由題意可知,對于任意的m、n∈[﹣1,1]有 ,
可設x1=m,x2=﹣n,則 ,即 ,
當x1>x2時,f(x1)>f(x2),
∴函數(shù)f(x)在區(qū)間[﹣1,1]上是增函數(shù);
當x1<x2時,f(x1)<f(x2),
∴函數(shù)f(x)在區(qū)間[﹣1,1]上是增函數(shù);
綜上:函數(shù)f(x)在區(qū)間[﹣1,1]上是增函數(shù)
(2)由(1)知函數(shù)f(x)在區(qū)間[﹣1,1]上是增函數(shù),
又由 ,
得 ,解得 ,
∴不等式 的解集為
(3)∵函數(shù)f(x)在區(qū)間[﹣1,1]上是增函數(shù),且f(1)=1,
要使得對于任意的x∈[﹣1,1],a∈[﹣1,1]都有f(x)≤﹣2at+2恒成立,
只需對任意的a∈[﹣1,1]時﹣2at+2≥1,即﹣2at+1≥0恒成立,
令y=﹣2at+1,此時y可以看做a的一次函數(shù),且在a∈[﹣1,1]時y≥0恒成立,
因此只需要 ,解得 ,
∴實數(shù)t的取值范圍為:
【解析】(1)設x1=m,x2=﹣n,由已知可得 ,分x1>x2 , 及x1<x2兩種情況可知f(x1)與f(x2)的大小,借助單調(diào)性的定義可得結(jié)論;(2)利用函數(shù)單調(diào)性可得去掉不等式中的符號“f”,轉(zhuǎn)化為具體不等式,再考慮到函數(shù)定義域可得不等式組,解出即可;(3)要使得對于任意的x∈[﹣1,1],a∈[﹣1,1]都有f(x)≤﹣2at+2恒成立,只需對任意的a∈[﹣1,1]時﹣2at+2≥f(x)max , 整理后化為關(guān)于a的一次函數(shù)可得不等式組;
【考點精析】解答此題的關(guān)鍵在于理解奇偶性與單調(diào)性的綜合的相關(guān)知識,掌握奇函數(shù)在關(guān)于原點對稱的區(qū)間上有相同的單調(diào)性;偶函數(shù)在關(guān)于原點對稱的區(qū)間上有相反的單調(diào)性.
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在三棱錐P﹣ABC中,PA⊥平面ABC,AC⊥BC,D為側(cè)棱PC的中點,它的正(主)視圖和側(cè)(左)視圖如圖所示.
(Ⅰ)求三棱錐P﹣ABD的體積.
(Ⅱ)在∠ACB的平分線所在直線上確定一點Q,使得PQ∥平面ABD,并求此時PQ的長.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓,圓的圓心在橢圓上,點到橢圓的右焦點的距離為.
(1)求橢圓的方程;
(2)過點作互相垂直的兩條直線,且交橢圓于兩點, 直線交圓于兩點, 且為的中點, 求的面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)= + 的兩個極值點分別為x1 , x2 , 且x1∈(0,1),x2∈(1,+∞);點P(m,n)表示的平面區(qū)域為D,若函數(shù)y=loga(x+4)(a>1)的圖象上存在區(qū)域D內(nèi)的點,則實數(shù)a的取值范圍是( )
A.(1,3]
B.(1,3)
C.(3,+∞)
D.[3,+∞)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】海水養(yǎng)殖場進行某水產(chǎn)品的新、舊網(wǎng)箱養(yǎng)殖方法的產(chǎn)量對比,收獲時各隨機抽取了100個網(wǎng)箱,測量各箱水產(chǎn)品的產(chǎn)量(單位:kg)其頻率分布直方圖如下:
(1) 記表示事件“舊養(yǎng)殖法的箱產(chǎn)量低于50kg”,估計的概率;
(2)填寫下面聯(lián)表,并根據(jù)列聯(lián)表判斷是否有%的把握認為箱產(chǎn)量與養(yǎng)殖方法有關(guān):
箱產(chǎn)量 | 箱產(chǎn)量 | |
舊養(yǎng)殖法 | ||
新養(yǎng)殖法 |
(3)根據(jù)箱產(chǎn)量的頻率分布直方圖,對兩種養(yǎng)殖方法的優(yōu)劣進行比較.
附:
| 0.050 | 0.010 | 0.001 |
| 3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知集合A={x|m+1≤x≤2m﹣1},B={x|x<﹣2或x>5}
(1)若AB,求實數(shù)m的取值范圍的集合;
(2)若A∩B=,求實數(shù)m的取值范圍的集合.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù) 的定義域為集合A,B={x|x>3或x<2}.
(1)求A∩B;
(2)若C={x|x<2a+1},B∩C=C,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知集合A=[2,log2t],集合B={x|y= },
(1)對于區(qū)間[a,b],定義此區(qū)間的“長度”為b﹣a,若A的區(qū)間“長度”為3,試求實數(shù)t的值.
(2)若AB,試求實數(shù)t的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com