【題目】已知集合A={x|m+1≤x≤2m﹣1},B={x|x<﹣2或x>5}
(1)若AB,求實數(shù)m的取值范圍的集合;
(2)若A∩B=,求實數(shù)m的取值范圍的集合.
【答案】
(1)解:∵集合A={x|m+1≤x≤2m﹣1},B={x|x<﹣2或x>5},AB,
∴當A=時,m+1>2m﹣1,解得m<2,
當A≠時, ,解得m>4.
∴實數(shù)m的取值范圍的集合為{m|m<2或m>4}
(2)解:∵A={x|m+1≤x≤2m﹣1},B={x|x<﹣2或x>5},A∩B=,
∴當A=時,m+1>2m﹣1,解得m<2,
當A≠時, ,解得2≤m≤3.
∴實數(shù)m的取值范圍的集合為{m|m≤3}
【解析】(1)由AB,分A=和A≠,兩種情況分類討論,能求出實數(shù)m的取值范圍的集合.(2)由A∩B=,分A=和A≠,兩種情況分類討論,能求出實數(shù)m的取值范圍的集合.
【考點精析】解答此題的關鍵在于理解集合的交集運算的相關知識,掌握交集的性質:(1)A∩BA,A∩BB,A∩A=A,A∩=,A∩B=B∩A;(2)若A∩B=A,則AB,反之也成立.
科目:高中數(shù)學 來源: 題型:
【題目】計算下列各式的值,寫出必要的計算過程.
(1)0.064 ﹣(﹣ )0+16 +0.25
(2)(log43+log83)(log32+log92)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(本小題滿分10分)選修4—4:坐標系與參數(shù)方程。
在直角坐標系xOy中,曲線C1的參數(shù)方程為(t是參數(shù)),以原點O為極點,x 軸正半軸為極軸建立極坐標系,曲線C2的極坐標方程為ρ=8cos(θ﹣).
(1)求曲線C2的直角坐標方程,并指出其表示何種曲線;
(2)若曲線C1與曲線C2交于A,B兩點,求|AB|的最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)是定義在區(qū)間[﹣1,1]上的奇函數(shù),且f(1)=1,若對于任意的m、n∈[﹣1,1]有 .
(1)判斷并證明函數(shù)的單調性;
(2)解不等式 ;
(3)若f(x)≤﹣2at+2對于任意的x∈[﹣1,1],a∈[﹣1,1]恒成立,求實數(shù)t的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知曲線C 的參數(shù)方程為 (為參數(shù)),以直角坐標系原點O 為極點,x 軸正半軸為極軸建立極坐標系.
(Ⅰ)求曲線C 的極坐標方程;
(Ⅱ)設,若l 1 、l2與曲線C 相交于異于原點的兩點 A、B ,求△AOB的面積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知定義在R上的函數(shù)f(x)=x2+2ax+3在(﹣∞,1]上是減函數(shù),當x∈[a+1,1]時,f(x)的最大值與最小值之差為g(a),則g(a)的最小值為( )
A.
B.1
C.
D.2
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(Ⅰ)已知 是空間的兩個單位向量,它們的夾角為60°,設向量 , .求向量 與 的夾角; (Ⅱ)已知 是兩個不共線的向量, .求證: 共面.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,橢圓C: (a>b>0)的離心率為,且過點(1,).過橢圓C的左頂點A作直線交橢圓C于另一點P,交直線l:x=m(m>a)于點M.已知點B(1,0),直線PB交l于點N.
(Ⅰ)求橢圓C的方程;
(Ⅱ)若MB是線段PN的垂直平分線,求實數(shù)m的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com