【題目】如圖,矩形ABCD的兩條對角線相交于點M(2,0),AB邊所在直線的方程為x-3y-6=0,點T(-1,1)在AD邊所在的直線上.

(1)求AD邊所在直線的方程;
(2)求矩形ABCD外接圓的方程.

【答案】
(1)解:因為AB邊所在直線的方程為x-3y-6=0,且AD與AB垂直,所以直線AD的斜率為-3.又因為點T(-1,1)在直線AD上,所以AD邊所在直線的方程為y-1=-3(x+1),即3x+y+2=0
(2)解:由 可得點A的坐標為(0,-2).
因為矩形ABCD兩條對角線的交點為M(2,0).
所以M為矩形ABCD外接圓的圓心.又|AM|= ,
從而矩形ABCD外接圓的方程為(x-2)2+y2=8
【解析】本題考查直線方程的求法,考查圓的方程的求法,考查向量數(shù)量積的求法,解題時要認真審題,注意直線性質的靈活運用.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,一個圓錐形的空杯子上放著一個直徑為8cm的半球形的冰淇淋,請你設計一種這樣的圓錐形杯子(杯口直徑等于半球形的冰淇淋的直徑,杯子壁厚忽略不計),使冰淇淋融化后不會溢出杯子,怎樣設計最省材料?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】一枚硬幣連續(xù)擲三次,至少出現(xiàn)一次正面朝上的概率為( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)= ,則y=f(x)的圖象大致為(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】己知(2x﹣ 5(Ⅰ)求展開式中含 項的系數(shù)
(Ⅱ)設(2x﹣ 5的展開式中前三項的二項式系數(shù)之和為M,(1+ax)6的展開式中各項系數(shù)之和為N,若4M=N,求實數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】直線l1過點A(0,1),l2過點B(5,0),如果l1∥l2且l1與l2的距離為5,求l1 , l2的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知N為自然數(shù)集,集合P={1,4,7,10,13},Q={2,4,6,8,10},則P∩ 等于( )
A.{1,7,13}
B.{4,10}
C.{1,7}
D.{0,1,3}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)
(1)若曲線y=f(x)在P(1,f(1))處的切線平行于直線y=﹣x+1,求函數(shù)y=f(x)的單調區(qū)間;
(2)若a>0,且對任意x∈(0,2e]時,f(x)>0恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角梯形ABCD中,AB⊥AD,AD∥BC,AB=BC=2AD=2,E,F(xiàn)分別為BC,CD的中點,以A為圓心,AD為半徑的圓交AB于G,點P在 上運動(如圖).若 ,其中λ,μ∈R,則6λ+μ的取值范圍是(
A.[1, ]
B.[ ,2 ]
C.[2,2 ]
D.[1,2 ]

查看答案和解析>>

同步練習冊答案