【題目】已知點(diǎn)P在拋物線y2=x上,點(diǎn)Q在圓(x+ )2+(y﹣4)2=1上,則|PQ|的最小值為( )
A.
B.
C.
D.
【答案】A
【解析】解:∵點(diǎn)P在拋物線y2=x上,設(shè)P(t2,t),
∵圓(x+ )2+(y﹣4)2=1的圓心C(﹣ ,4),半徑r=1,
∴|PC|2=(t2+ )2+(t﹣4)2,
=t4+2t2﹣8t+ ,
設(shè)f(t)=t4+2t2﹣8t+ ,f′(t)=4t3+4t﹣8,f″(t)=12t2+4>0恒成立,
∴f′(t)在R上單調(diào)遞增,當(dāng)f′(t)=0,解得:t=1,
∴f(t)在(﹣∞,1)單調(diào)遞減,在(1,+∞)單調(diào)遞增,
∴當(dāng)t=1時(shí),取最小值,最小值為 ,
∴丨PC丨的最小值為 ,
則丨PQ丨的最小值為:丨PQ丨min=丨PC丨min﹣r= ﹣1,
∴|PQ|的最小值 ﹣1,
故選A.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】第96屆(春季)全國(guó)糖酒商品交易會(huì)于2017年3月23日至25日在四川舉辦.交易會(huì)開(kāi)始前,展館附近一家川菜特色餐廳為了研究參會(huì)人數(shù)與餐廳所需原材料數(shù)量的關(guān)系,查閱了最近5次交易會(huì)的參會(huì)人數(shù)x(萬(wàn)人)與餐廳所用原材料數(shù)量t(袋),得到如下數(shù)據(jù):
第一次 | 第二次 | 第三次 | 第四次 | 第五次 | |
參會(huì)人數(shù)x(萬(wàn)人) | 11 | 9 | 8 | 10 | 12 |
原材料t(袋) | 28 | 23 | 20 | 25 | 29 |
(Ⅰ)請(qǐng)根據(jù)所給五組數(shù)據(jù),求出t關(guān)于x的線性回歸方程 ;
(Ⅱ)已知購(gòu)買原材料的費(fèi)用C(元)與數(shù)量t(袋)的關(guān)系為 投入使用的每袋原材料相應(yīng)的銷售收入為600元,多余的原材料只能無(wú)償返還.若餐廳原材料現(xiàn)恰好用完,據(jù)悉本次交易會(huì)大約有14萬(wàn)人參加,根據(jù)(Ⅰ)中求出的線性回歸方程,預(yù)測(cè)餐廳應(yīng)購(gòu)買多少袋原材料,才能獲得最大利潤(rùn),最大利潤(rùn)是多少?(注:利潤(rùn)L=銷售收入﹣原材料費(fèi)用).
(參考公式: = , )
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=log2(|x+1|+|x﹣2|﹣m).
(1)當(dāng)m=7時(shí),求函數(shù)f(x)的定義域;
(2)若關(guān)于x的不等式f(x)≥2的解集是R,求m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=sin(2x﹣ )+2cos2x﹣1(x∈R).
(1)求f(x)的單調(diào)遞增區(qū)間;
(2)在△ABC中,三內(nèi)角A,B,C的對(duì)邊分別為a,b,c,已知f(A)= ,b,a,c成等差數(shù)列,且 =9,求a的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】我國(guó)古代數(shù)學(xué)名著《九章算術(shù)》的論割圓術(shù)中有:“割之彌細(xì),所失彌少,割之又割,以至于不可割,則與圓周合體而無(wú)所失矣.”它體現(xiàn)了一種無(wú)限與有限的轉(zhuǎn)化過(guò)程.比如在表達(dá)式1+ 中“…”即代表無(wú)數(shù)次重復(fù),但原式卻是個(gè)定值,它可以通過(guò)方程1+ =x求得x= .類比上述過(guò)程,則 =( )
A.3
B.
C.6
D.2
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在三棱柱ABC﹣A1B1C1中,側(cè)面ACC1A1⊥底面ABC,∠A1AC=60°,AC=2AA1=4,點(diǎn)D,E分別是AA1 , BC的中點(diǎn).
(1)證明:DE∥平面A1B1C;
(2)若AB=2,∠BAC=60°,求直線DE與平面ABB1A1所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知定義在R上的函數(shù)f(x)滿足條件f(x+4)=﹣f(x),且函數(shù)y=f(x+2)是偶函數(shù),當(dāng)x∈(0,2]時(shí), ,當(dāng)x∈[﹣2,0)時(shí),f(x)的最小值為3,則a的值等于( )
A.e2
B.e
C.2
D.1
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,拋物線y2=﹣2px(p>0)的焦點(diǎn)F與雙曲線x2﹣8y2=8的左焦點(diǎn)重合,點(diǎn)A在拋物線上,且|AF|=6,若P是拋物線準(zhǔn)線上一動(dòng)點(diǎn),則|PO|+|PA|的最小值為( )
A.3
B.4
C.3
D.3
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖是判斷“實(shí)驗(yàn)數(shù)”的程序框圖,在[30,80]內(nèi)的所有整數(shù)中,“實(shí)驗(yàn)數(shù)”的個(gè)數(shù)是 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com