【題目】已知函數(shù).
討論函數(shù)的單調(diào)性;
設(shè)的兩個(gè)零點(diǎn)是, ,求證: .
【答案】(Ⅰ)答案見解析;(Ⅱ)證明見解析.
【解析】試題分析:(1)先求函數(shù)的定義域,求函數(shù)的導(dǎo)數(shù),在定義域內(nèi)討論函數(shù)的單調(diào)性;
(2)求出a=+x1+x2,問題轉(zhuǎn)化為證明>lnx1﹣lnx2,即證明>ln(*),令=t∈(0,1),則h(t)=(1+t)lnt﹣2t+2,根據(jù)函數(shù)的單調(diào)性證明即可.
試題解析: 函數(shù)的定義域?yàn)?/span>,
,
①當(dāng)時(shí), , ,則在上單調(diào)遞增;
②當(dāng)時(shí), 時(shí), , 時(shí), ,
則在上單調(diào)遞增,在上單調(diào)遞減.
首先易知,且在上單調(diào)遞增,在上單調(diào)遞減,
不妨設(shè),
,
構(gòu)造,
又
∴,∴,∴在上單調(diào)遞增,
∴,即,
又, 是函數(shù)的零點(diǎn)且,∴
而, 均大于,所以,所以,得證.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)圓滿足:(1)截軸所得弦長(zhǎng)為2;(2)被軸分成兩段圓弧,其弧長(zhǎng)的比為.在滿足條件(1)、(2)的所有圓中,圓心到直線的距離最小的圓的方程為__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知幾何體A﹣BCED的三視圖如圖所示,其中俯視圖和側(cè)視圖都是腰長(zhǎng)為4的等腰直角三角形,正視圖為直角梯形.
(1)求此幾何體的體積V的大小;
(2)求異面直線DE與AB所成角的余弦值;
(3)求二面角A﹣ED﹣B的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】阿海準(zhǔn)備購(gòu)買“海馬”牌一輛小汽車,其中購(gòu)車費(fèi)用12.8萬(wàn)元,每年的保險(xiǎn)費(fèi)、汽油費(fèi)約為0.95萬(wàn)元,年維修、保養(yǎng)費(fèi)第一年是0.1萬(wàn)元,以后逐年遞增0.1萬(wàn)元.請(qǐng)你幫阿海計(jì)算一下這種汽車使用多少年,它的年平均費(fèi)用最少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)不等式組 所表示的平面區(qū)域?yàn)镈n , 記Dn內(nèi)的格點(diǎn)(格點(diǎn)即橫坐標(biāo)和縱坐標(biāo)皆為整數(shù)的點(diǎn))的個(gè)數(shù)為f(n)(n∈N*).
(1)求f(1)、f(2)的值及f(n)的表達(dá)式;
(2)設(shè)bn=2nf(n),Sn為{bn}的前n項(xiàng)和,求Sn;
(3)記 ,若對(duì)于一切正整數(shù)n,總有Tn≤m成立,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某學(xué)校為了了解高二年級(jí)學(xué)生對(duì)教師教學(xué)的意見,打算從高二年級(jí)883名學(xué)生中抽取80名進(jìn)行座談,若采用下面的方法選。合扔煤(jiǎn)單隨機(jī)抽樣從883人中剔除3人,剩下880人再按系統(tǒng)抽樣的方法進(jìn)行,則每人入選的概率是( )
A.
B.
C.
D.無(wú)法確定
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在直三棱柱ABC﹣A1B1C1中,D,E分別為AB,BC的中點(diǎn),點(diǎn)F在側(cè)棱B1B上,且B1D⊥A1F,A1C1⊥A1B1 . 求證:
(1)直線DE∥平面A1C1F;
(2)平面B1DE⊥平面A1C1F.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)f(k)是滿足不等式log2x+log2(52k﹣1﹣x)≥2k(k∈N*)的自然數(shù)x的個(gè)數(shù).
(1)求f(k)的函數(shù)解析式;
(2)Sn=f(1)+2f(2)+…+nf(n),求Sn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)討論函數(shù)在區(qū)間上的單調(diào)性;
(2)已知函數(shù),若,且函數(shù)在區(qū)間內(nèi)有零點(diǎn),求的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com