【題目】已知函數(shù).

(1)討論函數(shù)在區(qū)間上的單調(diào)性;

(2)已知函數(shù),若,且函數(shù)在區(qū)間內(nèi)有零點,求的取值范圍.

【答案】(1)見解析(2)

【解析】試題分析:(1)先求導數(shù): ,再根據(jù)導函數(shù)符號是否變化分類討論:當時, ,當時, ,當時,在區(qū)間上單調(diào)遞減,在區(qū)間上單調(diào)遞增.(2)先求函數(shù)導數(shù),因為,結(jié)合(1)結(jié)論得: ,因此, ,由于,所以恒成立,解 的取值范圍.

試題解析:解:(1)由題得,所以.

時, ,所以上單調(diào)遞增;

時, ,所以上單調(diào)遞減;

時,令,得,

所以函數(shù)在區(qū)間上單調(diào)遞減,在區(qū)間上單調(diào)遞增.

綜上所述,當時, 上單調(diào)遞增;

時,函數(shù)在區(qū)間上單調(diào)遞減,在區(qū)間上單調(diào)遞增;

時,所以上單調(diào)遞減.

(2) , ,

在區(qū)間內(nèi)的一個零點,則由,可知在區(qū)間上不單調(diào),則在區(qū)間內(nèi)存在零點,同理, 在區(qū)間內(nèi)存在零點,所以在區(qū)間內(nèi)至少有兩個零點.

由(1)知,當時, 上單調(diào)遞增,故內(nèi)至多有一個零點,不合題意.

時, 上單調(diào)遞減,故內(nèi)至多有一個零點,不合題意,所以

此時在區(qū)間上單調(diào)遞減,在區(qū)間上單調(diào)遞增.

因此, , ,必有, .

,得, .

, ,解得.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如果 那么 xy>0 是 |x+y|=|x|+|y| 成立的( )
A.充分不必要條件
B.必要不充分條件
C.充要條件
D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在三棱錐中, 底面的中點, 的中點,點上,且.

1)求證: 平面;

2)求證: 平面

3)若,求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在多面體中,四邊形均為正方形, 平面 平面,且.

(1)求證: 平面

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)
(1)當 時,求曲線 在點 處的切線方程;
(2)當 時,判斷方程 實根個數(shù).
(3)若 時,不等式 恒成立,求實數(shù) m 的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】據(jù)市場調(diào)查,某種商品一年內(nèi)每件出廠價在7千元的基礎上,按月呈f(x)=Asin(ωx+)+b (A>0,ω>0,| |<)的模型波動(x為月份),已知3月份達到最高價9千元,7月份價格最低為5千元,根據(jù)以上條件可確定f(x)的解析式為

A. f(x)=2sin(x-)+7 (1≤x≤12,x∈N

B. f(x)=9sin(x-) (1≤x≤12,x∈N

C. f(x)=2sinx+7 (1≤x≤12,x∈N

D. f(x)=2sin(x+)+7 (1≤x≤2,x∈N

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知雙曲線 的右焦點為F(c,0).
(1)若雙曲線的一條漸近線方程為yxc=2,求雙曲線的方程;
(2)以原點O為圓心,c為半徑作圓,該圓與雙曲線在第一象限的交點為A , 過A作圓的切線,斜率為 ,求雙曲線的離心率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】心理學家發(fā)現(xiàn)視覺和空間能力與性別有關,某數(shù)學興趣小組為了驗證這個結(jié)論,從興趣小組中按分層抽樣的方法抽取50名同學(男3020),給所有同學幾何題和代數(shù)題各一題,讓各位同學自由選擇一道題進行解答.選題情況如下表:(單位:人)

(1)能否據(jù)此判斷有97.5%的把握認為視覺和空間能力與性別有關?

(2)經(jīng)過多次測試后,女生甲每次解答一道幾何題所用的時間在5~7分鐘,女生乙每次解答一道幾何題所用的時間在6~8分鐘,現(xiàn)甲、乙各解同一道幾何題,求乙比甲先解答完的概率.

附表:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某大學藝術專業(yè)400名學生參加某次測評,根據(jù)男女學生人數(shù)比例,使用分層抽樣的方法從中隨機抽取了100名學生,記錄他們的分數(shù),將數(shù)據(jù)分成7組:[20,30),[30,40),┄,[80,90],并整理得到如下頻率分布直方圖:

(Ⅰ)從總體的400名學生中隨機抽取一人,估計其分數(shù)小于70的概率;

(Ⅱ)已知樣本中分數(shù)小于40的學生有5人,試估計總體中分數(shù)在區(qū)間[40,50)內(nèi)的人數(shù);

(Ⅲ)已知樣本中有一半男生的分數(shù)不小于70,且樣本中分數(shù)不小于70的男女生人數(shù)相等.試估計總體中男生和女生人數(shù)的比例.

查看答案和解析>>

同步練習冊答案