(08年龍巖一中沖刺文)(12分)

在一次購(gòu)物抽獎(jiǎng)活動(dòng)中,假設(shè)10張獎(jiǎng)券中有一等獎(jiǎng)券1張,可獲價(jià)值50元的獎(jiǎng)品;有二等獎(jiǎng)券3張,可獲價(jià)值10元的獎(jiǎng)品;其余6張沒(méi)有獎(jiǎng). 某顧客從此10張獎(jiǎng)券中任抽2張,求:

(1)該顧客中獎(jiǎng)的概率;

(2)該顧客獲得的獎(jiǎng)品總價(jià)值不低于20元的概率.

解析:(1)該顧客中獎(jiǎng)的概率為: …………………6分

   (2) 方法1:該顧客獲得的獎(jiǎng)品總價(jià)值不低于20元,有以下三種情形:

      該顧客獲得的獎(jiǎng)品總價(jià)值為20元的概率為:;

      該顧客獲得的獎(jiǎng)品總價(jià)值為50元的概率為:;

      該顧客獲得的獎(jiǎng)品總價(jià)值為60元的概率為:

故該顧客獲得的獎(jiǎng)品總價(jià)值不低于20元的概率為:

.          …………………12分

      方法2:可考慮其對(duì)立事件的概率:

      .     …………………12分 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(08年龍巖一中沖刺文)(本題滿分14分)已知函數(shù)(其中),

(1)求的取值范圍;

(2)方程有幾個(gè)實(shí)根?為什么?

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(08年龍巖一中沖刺文)(12分)

如圖,梯形中,,,的中點(diǎn),將沿折起,使點(diǎn)折到點(diǎn)的位置,且二面角的大小為

(1)求證:

(2)求直線與平面所成角的大小

(3)求點(diǎn)到平面的距離

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(08年龍巖一中沖刺理)(12分)

已知雙曲線的兩個(gè)焦點(diǎn)為,,為動(dòng)點(diǎn),若,為定值(其中>1),的最小值為.

(Ⅰ)求動(dòng)點(diǎn)的軌跡的方程;

(Ⅱ)設(shè)點(diǎn),過(guò)點(diǎn)作直線交軌跡,兩點(diǎn),判斷的大小是否為定值?并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(08年龍巖一中沖刺理)(14分)

在直角坐標(biāo)平面xoy上的一列點(diǎn)簡(jiǎn)記為,若由構(gòu)成的數(shù)列滿足其中是y軸正方向相同的單位向量,則為T點(diǎn)列.

(1)判斷是否為T點(diǎn)列,并說(shuō)明理由;

(2)若為T點(diǎn)列,且點(diǎn)的右上方,任取其中連續(xù)三點(diǎn),判定的形狀(銳角三角形、直角三角形、鈍角三角形),并予以證明;

(3)若為T點(diǎn)列,正整數(shù)滿足.求證:

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(08年龍巖一中沖刺文)(12分)

已知O為坐標(biāo)原點(diǎn),,

(1)若,求的單調(diào)遞增區(qū)間;

(2)若的定義域?yàn)?IMG height=41 src='http://thumb.zyjl.cn/pic1/img/20090421/20090421173335006.gif' width=45>,值域?yàn)閇2,5],求a,b的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案