【題目】設(shè)F是橢圓C:(a>b>0)的一個(gè)焦點(diǎn),P是橢圓C上的點(diǎn),圓x2+y2=與線段PF交于A,B兩點(diǎn),若A,B三等分線段PF,則橢圓C的離心率為( )
A.B.
C.D.
【答案】D
【解析】
取線段PF的中點(diǎn)H,連接OH,OA,由題意可得OH⊥AB,設(shè)|OH|=d,根據(jù)橢圓的定義以及在Rt△OHA中,可得a=5d,在Rt△OHF中,利用勾股定理即可求解.
如圖,取線段PF的中點(diǎn)H,連接OH,OA.
設(shè)橢圓另一個(gè)焦點(diǎn)為E,連接PE.
∵A,B三等分線段PF,∴H也是線段AB的中點(diǎn),即OH⊥AB.
設(shè)|OH|=d,則|PE|=2d,|PF|=2a-2d,|AH|=.
在Rt△OHA中,|OA|2=|OH|2+|AH|2,解得a=5d.
在Rt△OHF中,|FH|=,|OH|=,|OF|=c.
由|OF|2=|OH|2+|FH|2,
化簡(jiǎn)得17a2=25c2,.
即橢圓C的離心率為.
故選:D.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)有初中學(xué)生1800人,高中學(xué)生1200人. 為了解學(xué)生本學(xué)期課外閱讀時(shí)間,現(xiàn)采用分層抽樣的方法,從中抽取了100名學(xué)生,先統(tǒng)計(jì)了他們課外閱讀時(shí)間,然后按“初中學(xué)生”和“高中學(xué)生”分為兩組,再將每組學(xué)生的閱讀時(shí)間(單位:小時(shí))分為5組:,,,,,并分別加以統(tǒng)計(jì),得到如圖所示的頻率分布直方圖.
(Ⅰ)寫出的值;試估計(jì)該校所有學(xué)生中,閱讀時(shí)間不小于30個(gè)小時(shí)的學(xué)生人數(shù);
(Ⅱ)從閱讀時(shí)間不足10個(gè)小時(shí)的樣本學(xué)生中隨機(jī)抽取2人,求至少抽到1名高中生的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在四棱錐中,為與的交點(diǎn),平面,是正三角形,,.
(1)求異面直線和所成角的大。
(2)若點(diǎn)為棱上一點(diǎn),且平面,求的值;
(3)求證:平面平面.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知四棱錐的底面是直角梯形,,為的中點(diǎn),.
(1)證明:平面;
(2)若與平面所成的角為,試問“在側(cè)面內(nèi)是否存在一點(diǎn),使得平面?若存在,求出的長(zhǎng)度;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓()的離心率為,連接橢圓四個(gè)頂點(diǎn)得到的菱形的面積為4.
(1)求橢圓的方程;
(2)設(shè)是橢圓的右頂點(diǎn),過點(diǎn)作兩條互相垂直的直線,分別與橢圓交于,兩點(diǎn),求證:直線過定點(diǎn);
(3)(只理科做)過點(diǎn)作兩條互相垂直的直線,,與圓:交于,兩點(diǎn),交橢圓于另一點(diǎn),求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在多面體中,四邊形是菱形,,四邊形是直角梯形,,,.
(Ⅰ)證明:平面.
(Ⅱ)若平面平面,為的中點(diǎn),求平面與平面所成銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(1)當(dāng)a≤0時(shí),討論函數(shù)f(x)的單調(diào)性;
(2)是否存在實(shí)數(shù)a,對(duì)任意的x1,x2(0,+∞),且x1≠x2,都有恒成立.若存在,求出a的取值范圍;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】將個(gè)編號(hào)為、、、的不同小球全部放入個(gè)編號(hào)為、、、的個(gè)不同盒子中.求:
(1)每個(gè)盒至少一個(gè)球,有多少種不同的放法?
(2)恰好有一個(gè)空盒,有多少種不同的放法?
(3)每盒放一個(gè)球,并且恰好有一個(gè)球的編號(hào)與盒子的編號(hào)相同,有多少種不同的放法?
(4)把已知中個(gè)不同的小球換成四個(gè)完全相同的小球(無編號(hào)),其余條件不變,恰有一個(gè)空盒,有多少種不同的放法?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩臺(tái)機(jī)床生產(chǎn)同一型號(hào)零件,記生產(chǎn)的零件的尺寸為,相關(guān)行業(yè)質(zhì)檢部門規(guī)定:若,則該零件為優(yōu)等品;若,則該零件為中等品;其余零件為次品.現(xiàn)分別從甲、乙機(jī)床生產(chǎn)的零件中各隨機(jī)抽取50件,經(jīng)質(zhì)里檢測(cè)得到下表數(shù)據(jù):
尺寸 | ||||||
甲機(jī)床零件頻數(shù) | 2 | 3 | 20 | 20 | 4 | 1 |
乙機(jī)床零件頻數(shù) | 3 | 5 | 17 | 13 | 8 | 4 |
(Ⅰ)設(shè)生產(chǎn)每件產(chǎn)品的利潤(rùn)為:優(yōu)等品3元,中等品1元,次品虧本1元.若將頻率視為概率,試估算甲機(jī)床生產(chǎn)一件零件的利潤(rùn)的數(shù)學(xué)期望;
(Ⅱ)根據(jù)已知條件完成下面的列聯(lián)表,并據(jù)此數(shù)據(jù)回答:是否有的把握認(rèn)為“零件優(yōu)等與否和所用機(jī)床有關(guān)”?
甲機(jī)床 | 乙機(jī)床 | 合計(jì) | |
優(yōu)等品 | |||
非優(yōu)等品 | |||
合計(jì) |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com