已知圓C1:(x-2)2+(y-3)2=1,圓C2:(x-3)2+(y-4)2=9,M,N分別是圓C1,C2上的動(dòng)點(diǎn),P為x軸上的動(dòng)點(diǎn),則|PM|+|PN|的最小值為
 
,最大值為
 
考點(diǎn):橢圓的定義
專題:計(jì)算題,直線與圓
分析:求出圓C1關(guān)于x軸的對(duì)稱圓的圓心坐標(biāo)A,以及半徑,然后求解圓A與圓C2的圓心距減去兩個(gè)圓的半徑和,即可求出|PM|+|PN|的最小值,|PM|+|PN|的最大值為圓A與圓C2的圓心距加上兩個(gè)圓的半徑和.
解答: 解:如圖,圓C1關(guān)于x軸的對(duì)稱圓的圓心坐標(biāo)A(2,-3),半徑為1,圓C2的圓心坐標(biāo)(3,4),半徑為3,
|PM|+|PN|的最小值為圓A與圓C2的圓心距減去兩個(gè)圓的半徑和,
即:
(3-2)2+(4+3)2
-4=5
2
-4.
|PM|+|PN|的最大值為圓A與圓C2的圓心距加上兩個(gè)圓的半徑和,
即:
(3-2)2+(4+3)2
+4=5
2
+4.
故答案為:5
2
-4,5
2
+4.
點(diǎn)評(píng):本題考查圓的對(duì)稱圓的方程的求法,考查兩個(gè)圓的位置關(guān)系,兩點(diǎn)距離公式的應(yīng)用,考查轉(zhuǎn)化思想與計(jì)算能力,考查數(shù)形結(jié)合的數(shù)學(xué)思想,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知向量
a
=(
3
,sin(x-
π
12
)),
b
=(sin(2x-
π
6
),2sin(x-
π
12
)),定義函數(shù)f(x)=
a
b

(1)求函數(shù)f(x)的表達(dá)式;
(2)令φ(x)=f(x+
π
4
),試畫出函數(shù)φ(x)在[0,π]這個(gè)周期內(nèi)的圖象.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若函數(shù)f(x)=1oga(x+
a
x
-1)(a>0且a≠1)的定義域?yàn)椋?,+∞),則實(shí)數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

知?jiǎng)狱c(diǎn)P(a,b)在區(qū)域
2x-y-4≤0
x-y≥0
y≥0
上運(yùn)動(dòng).
(Ⅰ)若w=
a+b-3
a-1
,求w的范圍
(Ⅱ)求覆蓋此區(qū)域的面積最小的圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}中,a2=1,前n項(xiàng)和為Sn,且Sn=
n(an-a1)
2
(n∈N*).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)求
lim
n→∞
Sn
n2
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若直線l1:ax+y+2a=0與l2:x+ay+3=0互相平行,則實(shí)數(shù)a=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知cosα=
1
3
,cos(α+β)=-
1
3
,且α、β∈(0,
π
2
),則cos(α-β)=(  )
A、-
10
2
27
B、-
2
2
3
C、
23
27
D、-
9
27

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知正項(xiàng)等比數(shù)列{an}中,a2=4,a4=16.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若a3,a5分別是等差數(shù)列{bn}的第3項(xiàng)和第5項(xiàng),求數(shù)列{bn}的通項(xiàng)公式及前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

圓錐曲線C的一個(gè)焦點(diǎn)是F(0,1),相應(yīng)的準(zhǔn)線方程為y+1=0,且曲線C經(jīng)過(guò)點(diǎn)(2,3),則曲線C的形狀是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案