8.已知$|\overrightarrow a|=1$,$|\overrightarrow b|=1$,$\overrightarrow a$與$\overrightarrow b$的夾角為60°,那么$|2\overrightarrow a-\overrightarrow b|$=( 。
A.2B.3C.$\sqrt{3}$D.$\sqrt{7}$

分析 運用向量數(shù)量積的定義和性質(zhì):向量的平方即為模的平方,計算即可得到所求值.

解答 解:$|\overrightarrow a|=1$,$|\overrightarrow b|=1$,$\overrightarrow a$與$\overrightarrow b$的夾角為60°,
則$\overrightarrow{a}$•$\overrightarrow$=|$\overrightarrow{a}$|•|$\overrightarrow$|•cos60°=1×1×$\frac{1}{2}$=$\frac{1}{2}$,
那么$|2\overrightarrow a-\overrightarrow b|$=$\sqrt{(2\overrightarrow{a}-\overrightarrow)^{2}}$=$\sqrt{4{\overrightarrow{a}}^{2}-4\overrightarrow{a}•\overrightarrow+{\overrightarrow}^{2}}$
=$\sqrt{4-4×\frac{1}{2}+1}$=$\sqrt{3}$.
故選:C.

點評 本題考查平面向量的數(shù)量積的定義和性質(zhì),主要是向量的平方即為模的平方,考查運算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知雙曲線C:mx2+ny2=1(mn<0)的一條漸近線與圓x2+y2-6x-2y+9=0相切,則C的離心率等于( 。
A.$\frac{5}{3}$B.$\frac{5}{4}$C.$\frac{5}{3}$或$\frac{25}{16}$D.$\frac{5}{3}$或$\frac{5}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.對一批零件的長度(單位:mm)進行抽樣檢測,檢測結(jié)果的頻率分布直方圖如圖所示.根據(jù)標準,零件長度在區(qū)間[20,25)上的為一等品,在區(qū)間[15,20)和區(qū)間[25,30)上的為二等品,在區(qū)間[10,15)和[30,35)上的為三等品.
(Ⅰ)用頻率估計概率,現(xiàn)從該批產(chǎn)品中隨機抽取一件,求其為二等品的概率;
(Ⅱ)已知檢測結(jié)果為一等品的有6件,現(xiàn)隨機從三等品中取兩件,求取出的兩件產(chǎn)品中恰有1件的長度在區(qū)間[30,35)上的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知函數(shù)f(x)=lg(x+1),g(x)=lg(1-x).
(Ⅰ)求函數(shù)f(x)+g(x)的定義域;
(Ⅱ)判斷函數(shù)f(x)+g(x)的奇偶性,并說明理由;
(Ⅲ)判斷函數(shù)f(x)+g(x)在區(qū)間(0,1)上的單調(diào)性,并加以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.圓錐過軸的截面是( 。
A.B.等腰三角形C.矩形D.拋物線

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.若焦點在y軸上的橢圓$\frac{{x}^{2}}{m}$+$\frac{{y}^{2}}{2}$=1的離心率為$\frac{2}{3}$,則m的值為( 。
A.$\frac{8}{3}$B.$\frac{2}{3}$C.$\frac{10}{9}$D.以上答案均不對

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知O為坐標原點,點A的坐標為(3,-1),點P(x,y)的坐標滿足不等式組$\left\{\begin{array}{l}y≤2\\ x+y≥1\\ x-y≤a\end{array}\right.$,若$z=\overrightarrow{OP}•\overrightarrow{OA}$的最大值為7,則實數(shù)a的值為( 。
A.-7B.-1C.1D.7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.國慶期間,高速公路堵車現(xiàn)象經(jīng)常發(fā)生.某調(diào)查公司為了了解車速,在贛州西收費站從7座以下小型汽車中按進收費站的先后順序,每間隔50輛就抽取一輛的抽樣方法抽取40輛汽車進行抽樣調(diào)查,將他們在某段高速公路的車速(km/h))分成六段[60,65),[65,70),[70,75),[75,80),[80,85),[85,90]后,得到如圖的頻率分布直方圖.
(1)求這40輛小型汽車車速的眾數(shù)和中位數(shù)的估計值;
(2)若從這40輛車速在[60,70)的小型汽車中任意抽取2輛,求抽出的2輛車車速都在[65,70)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知橢圓C1和拋物線C2的焦點均在x軸上,從兩條曲線上各取兩個點,將其坐標混合記錄于表中:
x$-\sqrt{2}$2$\sqrt{6}$9
y$\sqrt{3}$$-\sqrt{2}$-13
(1)求橢圓C1和拋物線C2的標準方程;
(2)過橢圓C1右焦點F的直線l與此橢圓相交于A,B兩點,點P(4,0),設(shè)$\overrightarrow{FA}=λ\overrightarrow{FB},λ∈[{-2,-1}]$,求$|{\overrightarrow{PA}+\overrightarrow{PB}}|$取最大值時,直線l的斜率.

查看答案和解析>>

同步練習(xí)冊答案