8.已知f(x)=$\left\{\begin{array}{l}{x+\frac{1}{2},0≤x<1}\\{{2}^{x-1},x≥1}\end{array}\right.$,存在x2>x1≥0,使得f(x1)=f(x2),則x1•f(x2)的取值范圍為( 。
A.[$\frac{1}{2}$,$\frac{3}{2}$)B.[$\frac{\sqrt{2}}{2}$,$\frac{3}{2}$)C.[$\frac{\sqrt{2}}{4}$,1)D.[1,$\frac{3}{2}$)

分析 根據(jù)函數(shù)的解析式畫出函數(shù)的圖象,根據(jù)題意數(shù)形結(jié)合求得x1•f(x2)的取值范圍.

解答 解:①當(dāng)0≤x<1時,$\frac{1}{2}$≤f(x)<$\frac{3}{2}$,
②當(dāng)x>1時,f(x)≥1,
如圖所示,若存在x2>x1≥0使得f(x1)=f(x2
=k,則$\frac{1}{2}$≤x1<1≤x2≤log23,
則1≤f(x2)≤$\frac{3}{2}$,
∴$\frac{1}{2}$×1≤x1•f(x2)<1×$\frac{3}{2}$,
即$\frac{1}{2}$≤x1•f(x2)<$\frac{3}{2}$,
故x1•f(x2)的取值范圍為[$\frac{1}{2}$,$\frac{3}{2}$),
故選:A

點評 本題考查函數(shù)的單調(diào)性,考查學(xué)生分析解決問題的能力,體現(xiàn)了數(shù)形結(jié)合的數(shù)學(xué)思想,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.如圖,在四棱錐P-ABCD中,已知AB∥CD,PA=AB=AD=2,DC=1,AD⊥AB,PD=PB=2$\sqrt{2}$.點M是PB的中點.
(1)證明:CM∥平面PAD;
(2)求四面體MABC的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.甲、乙兩個工廠2015年1月份的產(chǎn)值相等,甲廠的產(chǎn)值逐月增加,且每月增長的產(chǎn)值相同;乙廠的產(chǎn)值也逐月增加,且每月增長的百分率相同,已知2016年1月份的產(chǎn)值又相等,則2016年7月份產(chǎn)值( 。
A.甲廠高B.乙廠高
C.甲、乙兩廠相等D.甲、乙兩廠高低無法確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知等差數(shù)列{an}中,a5=12,a20=-18.
(1)求數(shù)列{an}的通項公式;
(2)求數(shù)列{an}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.圓心為M(-1,0),且過點A(1,2)的圓(x+1)2+y2=8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.在平面直角坐標(biāo)系xoy中,直線l:x=-2交x軸于點A,設(shè)p是l上一點,M是線段OP的垂直平分線上一點,且滿足∠MPO=∠AOP
(1)當(dāng)點P在l上運(yùn)動時,求點M的軌跡E的方程;
(2)已知T(1,-1),設(shè)H是E 上動點,求|HO|+|HT|的最小值,并給出此時點H的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知直角梯形ABCD中,AB∥CD,∠BCD=60°,E是線段AD上靠近A的三等分點,F(xiàn)是線段DC的中點,若AB=2,AD=$\sqrt{3}$,則$\overrightarrow{EB•}$$\overrightarrow{EF}$=$\frac{7}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.如圖,AB是圓O的直徑,點C是圓O上異于A,B的點,PO垂直于圓O所在的平面,且PO=OB=1.則三棱錐P-ABC體積的最大值為$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知定點A(0,1),直線l1:y=-1交y軸于點B,記過點A且與直線l1相切的圓的圓心為點C.
(1)求動點C的軌跡E的方程;
(2)設(shè)傾斜角為α的直線l2過點A,交軌跡E于兩點P、Q,交直線l1于點R.若$α∈[{\frac{π}{6},\frac{π}{4}}]$,求|PR|•|QR|的最小值.

查看答案和解析>>

同步練習(xí)冊答案