分析 (1)由于直線l:x=-2交x軸于點A,所以A(-2,0),由于P是l上一點,M是線段OP的垂直平分線上一點,且滿足∠MPO=∠AOP,可以設點P,由于滿足∠MPO=∠AOP,所以分析出MN∥AO,利用相關點法可以求出動點M的軌跡方程;
(2)由題意及點M的軌跡E的方程為y2=4(x+1),且已知T(1,-1),又H是E 上動點,點O及點T都為定點,利用圖形即可求出.
解答 解:(1)如圖所示,
連接OM,則|PM|=|OM|,
∵∠MPO=∠AOP,
∴動點M滿足MP⊥l或M在x的負半軸上,
設M(x,y)
①當MP⊥l時,|MP|=|x+2|,
|OM|=$\sqrt{{x}^{2}+{y}^{2}}$,|x+2|=$\sqrt{{x}^{2}+{y}^{2}}$,
化簡得y2=4x+4 (x≥-1)
②當M在x的負半軸上時,y=0(x≤-1),
綜上所述,點M的軌跡E的方程為y2=4x+4(x≥-1)或y=0(x<-1).
(2)由題意畫出圖形如下:
∵由(1)知道動點M 的軌跡方程為:y2=4(x+1).
是以(-1,0)為頂點,以O(0,0)為焦點,以x=-2為準線的拋物線,
由H引直線HB垂直準線x=-2與B點,則
利用拋物線的定義可以得到:|HB|=|HO|,
∴要求|HO|+|HT|的最小值等價于求折線|HB|+|HT|的最小值,
由圖可知當由點T直接向準線引垂線是與拋物線相交的H使得HB|+|HT|的最小值,
故HO|+|HT|的最小值為3,且此時點H的坐標為$({-\frac{3}{4},-1})$.
點評 此題重點考查了利用相關點法求動點的軌跡方程,還考查了利用拋物線的定義求出HO|+|HT|的最小值時等價轉化的思想,屬于中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | (x+1)2+(y-1)2=4 | B. | (x+1)2+(y+1)2=4 | C. | (x-1)2+(y-1)2=4 | D. | (x+1)2+(y-1)2=2 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | [$\frac{1}{2}$,$\frac{3}{2}$) | B. | [$\frac{\sqrt{2}}{2}$,$\frac{3}{2}$) | C. | [$\frac{\sqrt{2}}{4}$,1) | D. | [1,$\frac{3}{2}$) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com