精英家教網 > 高中數學 > 題目詳情

【題目】設函數,其中為自然對數的底數.

(1)若曲線軸上的截距為,且在點處的切線垂直于直線,求實數的值;

(2)記的導函數為, 在區(qū)間上的最小值為,求的最大值.

【答案】(1) 的值分別為1, ;(2) .

【解析】試題分析:(1)先利用曲線軸上的截距為求得,再求導,利用導數的幾何意義進行求解;(2)連續(xù)求導,得到,再通過分類討論思想討論的取值,研究函數在區(qū)間的單調性和最小值,得到分段函數,則通過求導確定的最小值.

試題解析:(1)曲線軸上的截距為,則過點,代入

,則,求導,

,即,則,

∴實數的值分別為1, ;

(2) ,

①當時,∵,∴恒成立,

上單調遞增,

.

②當時,∵,∴恒成立,

, 單調遞減,

.

③當時, ,得 上單調遞減,在上單調遞增,

所以

,

∴當時, ,

時, ,求導, ,

時,

單調通減,

時, ,單調遞減, ,

的最大值.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】如圖,在直角梯形ABCD中,∠ADC=90°,CDAB,ADCDAB=2,將△ADC沿AC折起,使平面ADC⊥平面ABC,得到幾何體DABC.

(1)求證:AD⊥平面BCD;

(2)求三棱錐CABD的高.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知等比數列中, , 成等差數列;數列中的前項和為, .

(1)求數列的通項公式;

(2)求數列的前項和.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在小明的婚禮上,為了活躍氣氛,主持人邀請10位客人做一個游戲.第一輪游戲中,主持人將標有數字1,2,…,10的十張相同的卡片放入一個不透明箱子中,讓客人依次去摸,摸到數字6,7,…,10的客人留下,其余的淘汰,第二輪放入1,2,…,5五張卡片,讓留下的客人依次去摸,摸到數字3,4,5的客人留下,第三輪放入1,2,3三張卡片,讓留下的客人依次去摸,摸到數字2,3的客人留下,同樣第四輪淘汰一位,最后留下的客人獲得小明準備的禮物.已知客人甲參加了該游戲.

(1)求甲拿到禮物的概率;

(2)設表示甲參加游戲的輪數,求的概率分布和數學期望.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設圓的圓心為,直線過點且與軸不重合, 交圓兩點,過的平行線交于點.

(1)證明為定值,并寫出點的軌跡方程;

(2)設,過點作直線,交點的軌跡于兩點 (異于),直線的斜率分別為,證明: 為定值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】選修4-4:坐標系與參數方程

在極坐標系中,圓的圓心坐標為,半徑為2.以極點為原點,極軸為的正半軸,取相同的長度單位建立平面直角坐標系,直線的參數方程為為參數).

(1)求圓的極坐標方程;

(2)設與圓的交點為, 軸的交點為,求.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知曲線, ,則下列說法正確的是( )

A. 上各點橫坐標伸長到原來的2倍,縱坐標不變,再把得到的曲線向右平移個單位長度,得到曲線

B. 上各點橫坐標伸長到原來的2倍,縱坐標不變,再把得到的曲線向右平移個單位長度,得到曲線

C. 把曲線向右平移個單位長度,再把得到的曲線上各點橫坐標縮短到原來的,縱坐標不變,得到曲線

D. 把曲線向右平移個單位長度,再把得到的曲線上各點橫坐標縮短到原來的,縱坐標不變,得到曲線

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在四棱錐中, 是正三角形, 是等腰三角形, ,

(1)求證: ;

(2)若, ,平面平面,直線與平面所成的角為45°,求二面角的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數,其中.

1)設討論的單調性;

2)若函數內存在零點,求的范圍.

查看答案和解析>>

同步練習冊答案