15.函數(shù)f(x)在(-∞,+∞)單調(diào)遞減,且為奇函數(shù).若f(1)=-1,則滿足-1≤f(x-2)≤1的x的取值范圍是[1,3].

分析 根據(jù)題意,由函數(shù)奇偶性的性質(zhì)可得f(-1)=1,利用函數(shù)的單調(diào)性可得-1≤x-2≤1,解可得x的取值范圍,即可得答案.

解答 解:根據(jù)題意,f(x)為奇函數(shù),若f(1)=-1,則f(-1)=1,
f(x)在(-∞,+∞)單調(diào)遞減,且-1≤f(x-2)≤1,即f(1)≤f(x-2)≤f(-1),
則有-1≤x-2≤1,
解可得1≤x≤3,
即x的取值范圍是[1,3];
故答案為:[1,3].

點(diǎn)評(píng) 本題考查函數(shù)奇偶性與單調(diào)性的綜合應(yīng)用,關(guān)鍵是將-1≤f(x-2)≤1轉(zhuǎn)化為關(guān)于x的不等式.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知函數(shù)f(x)=ax-lnx;g(x)=$\frac{lnx}{x}$.
(1)討論函數(shù)f(x)的單調(diào)性;
(2)求證:若a=e(e是自然常數(shù)),當(dāng)x∈[1,e]時(shí),f(x)≥e-g(x)恒成立;
(3)若h(x)=x2[1+g(x)],當(dāng)a>1時(shí),對(duì)于?x1∈[1,e],?x0∈[1,e],使f(x1)=h(x0),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)f(x)=ln(x+1)-ax,a∈R.
(1)討論f(x)的極值;
(2)若$\frac{f(x)+ax}{{e}^{x}}$≤ax對(duì)任意x∈[0,+∞)恒成立,求實(shí)數(shù)a的取值范圍(其中e為自然對(duì)數(shù)的底數(shù)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.某市統(tǒng)計(jì)局就本地居民的月收入調(diào)查了10000人,并根據(jù)所得數(shù)據(jù)畫了樣本的頻率分布直方圖(每個(gè)分組包括左端點(diǎn),不包括右端點(diǎn),如第一組表示月收入在[1000,1500)(單位:元)).
(1)估計(jì)居民月收入在[1500,2000)的頻率;
(2)根據(jù)頻率分布直方圖估計(jì)樣本數(shù)據(jù)的中位數(shù)、平均數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.投籃測(cè)試中,每人投3次,至少投中2次才能通過測(cè)試.已知某同學(xué)每次投籃投中的概率為0.6,且各次投籃是否投中相互獨(dú)立,則該同學(xué)通過測(cè)試的概率為(  )
A.0.312B.0.36C.0.432D.0.648

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.如圖,在三棱柱ABC-A1B1C1中,AB⊥BC,頂點(diǎn)A1在底面ABC內(nèi)的射影恰好是AB的中點(diǎn)O,且AB=BC=2.OA1=2,
(1)求證:平面ABB1A1⊥平面BCC1B1;
(2)求直線A1C與平面ABC所成的角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.若函數(shù)$f(x)=4sinωx•{sin^2}({\frac{ωx}{2}+\frac{π}{4}})-2{sin^2}ωx(ω>0)$在$[{-\frac{π}{2},\frac{2π}{3}}]$上是增函數(shù),則ω的取值范圍是( 。
A.(0,1]B.$({0,}\right.\left.{\frac{3}{4}}]$C.[1,+∞)D.$[{\frac{3}{4}}\right.,+∞)$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.△ABC的內(nèi)角A、B、C的對(duì)邊分別為a,b,c,且csinA=$\sqrt{3}$acosC.
(1)求C;
(2)若b=1,c=$\sqrt{7}$,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.設(shè)△ABC的內(nèi)角A,B,C,已知C=$\frac{π}{3}$,若向量$\overrightarrow{m}$=(1,sinA)與向量$\overrightarrow{n}$=(2,sinB)共線,則△ABC的內(nèi)角A=$\frac{π}{6}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案