7.已知數(shù)列{an}中,a1=1,且滿足${a_{n+1}}=3{a_n}+2,n∈{N^*}$,求數(shù)列{an}的通項(xiàng)公式.

分析 根據(jù)數(shù)列遞推式,變形可得數(shù)列{an+1}是以2為首項(xiàng),以3為公比的等比數(shù)列,由此可得結(jié)論.

解答 解:由題意an+1=3an+2可以得到an+1+1=3an+2+1=3(an+1)
所以$\frac{{a}_{n+1}+1}{{a}_{n}+1}$=3,所以數(shù)列{an+1}是以a1+1=2為首項(xiàng),以3為公比的等比數(shù)列.
則有an+1=2×3n-1,an=2×3n-1-1.
所以數(shù)列{an}的通項(xiàng)公式an=2×3n-1-1.

點(diǎn)評(píng) 本題考查數(shù)列遞推式,考查等比數(shù)列的判定,考查學(xué)生的計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.一個(gè)袋子里裝有編號(hào)為1,2,3,…,12的12個(gè)相同大小的小球,其中1到6號(hào)球是紅色球,其余為黑色球.若從中任意摸出一個(gè)球,記錄它的顏色和號(hào)碼后再放回到袋子里,然后再摸出一個(gè)球,記錄它的顏色和號(hào)碼,則兩次摸出的球都是紅球,且至少有一個(gè)球的號(hào)碼是偶數(shù)的概率是$\frac{3}{16}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.${∫}_{-1}^{1}$|x|dx等于( 。
A.${∫}_{-1}^{1}$xdxB.${∫}_{-1}^{1}$dx
C.${∫}_{-1}^{0}$(-x)dx+${∫}_{0}^{1}$xdxD.${∫}_{-1}^{0}$xdx+${∫}_{0}^{1}$(-x)dx

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.函數(shù)f(x)=x+x3(x∈R),當(dāng)$0<θ<\frac{π}{2}$時(shí),f(asinθ)+f(1-a)>0恒成立,則實(shí)數(shù)a的取值范圍是{a|a≤1}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.若x,y滿足$\left\{\begin{array}{l}x-y+2≥0\\ x+y-4≤0\\ y≥0\end{array}\right.$,則z=y+2x的最大值為( 。
A.8B.4C.2D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.函數(shù)y=$\frac{1}{x}$的定義域是(  )
A.RB.{0}C.{x|x∈R,且x≠0}D.{x|x≠1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.集合{1,3,5,7,9}用描述法表示出來(lái)應(yīng)是(  )
A.{x|x是不大于9的非負(fù)奇數(shù)}B.{x|1≤x≤9}
C.{x|x≤9,x∈N}D.{x∈Z|0≤x≤9}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.設(shè)Sn是等比數(shù)列{an}的前n項(xiàng)和,若滿足a4+3a11=0,則$\frac{{{S_{21}}}}{{{S_{14}}}}$=$\frac{7}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.三位老師和三位學(xué)生站成一排,要求任何兩位學(xué)生都不相鄰,則不同的排法總數(shù)為144.

查看答案和解析>>

同步練習(xí)冊(cè)答案