分析 由題意可得函數(shù)f(x)為奇函數(shù),且函數(shù)在R上單調(diào)遞增,結(jié)合題意求得(1-sinθ)a<1,即a<$\frac{1}{1-sinθ}$.再根據(jù)$\frac{1}{1-sinθ}$>1,求得a的取值范圍.
解答 解:∵函數(shù)f(x)=x+x3(x∈R),∴函數(shù)f(x)為奇函數(shù),且函數(shù)在R上單調(diào)遞增,
當(dāng)$0<θ<\frac{π}{2}$時(shí),f(asinθ)+f(1-a)>0恒成立,即f(asinθ)>-f(1-a)=f(a-1)恒成立,
即 f(asinθ)>f(a-1)恒成立,∴asinθ>a-1,即(1-sinθ)a<1.
當(dāng)$0<θ<\frac{π}{2}$時(shí),sinθ∈( 0,1),∴a<$\frac{1}{1-sinθ}$.
由于$\frac{1}{1-sinθ}$>1,∴a≤1,
故答案為:{a|a≤1}.
點(diǎn)評 本題主要考查函數(shù)的奇偶性和單調(diào)性的綜合應(yīng)用,函數(shù)的恒成立問題,正弦函數(shù)的值域,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 若$\vec a•\vec b=\vec b•\vec c$,則$\vec a=\vec c$ | B. | 與向量$\vec a$共線的單位向量為$±\frac{\vec a}{{|{\vec a}|}}$ | ||
C. | 若$\vec a∥\vec b$,$\vec b∥\vec c$,則$\vec a∥\vec c$ | D. | 若$\vec a∥\vec b$,則存在唯一實(shí)數(shù)λ使得$\vec a=λ\vec b$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | $\frac{1}{2}i$ | C. | 1 | D. | i |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{4}{5}$ | B. | $-\frac{4}{5}$ | C. | $\frac{2}{5}$ | D. | $-\frac{2}{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -2013 | B. | -2014 | C. | -2015 | D. | -2016 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com