將函數(shù)f(x)=sin(2x+θ)的圖象向右平移φ(φ>0)個(gè)單位長度后得到函數(shù)g(x)的圖象,若f(x)、g(x)的圖象的對(duì)稱軸重合,則φ的值可以是( 。
A、
π
4
B、
4
C、
π
2
D、
π
6
考點(diǎn):函數(shù)y=Asin(ωx+φ)的圖象變換
專題:三角函數(shù)的圖像與性質(zhì)
分析:利用三角函數(shù)的圖象變換可求得g(x)=sin(2x+θ-2φ),依題意可得(2x+θ)-(2x+θ-2φ)=kπ(k∈Z),對(duì)k賦值,觀察選項(xiàng)即可.
解答: 解:∵g(x)=f(x-φ)=sin[2(x-φ)+θ]=sin(2x+θ-2φ),
又f(x)=sin(2x+θ)與g(x)=sin(2x+θ-2φ)的圖象的對(duì)稱軸重合,
∴(2x+θ)-(2x+θ-2φ)=kπ(k∈Z),
∴φ=
2
(k∈Z),
當(dāng)k=1時(shí),φ=
π
2
,即φ的值可以是
π
2

故選:C.
點(diǎn)評(píng):本題考查函數(shù)y=Asin(ωx+φ)的圖象變換,考查正弦函數(shù)的圖象的對(duì)稱性,分析得到(2x+θ)-(2x+θ-2φ)=kπ(k∈Z)是關(guān)鍵,考查轉(zhuǎn)化思想.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

底面ABCD為一個(gè)矩形,其中AB=6,AD=4.頂部線段EF∥平面ABCD,棱EA=ED=FB=FC=6
2
,EF=2,二面角F-BC-A的余弦值為
17
17
,設(shè)M,N是AD,BC的中點(diǎn),
(I)證明:BC⊥平面EFNM;
(Ⅱ)求平面BEF和平面CEF所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某同學(xué)5次考試的成績分別為x,y,100,110,90,已知這5次成績的平均數(shù)為100,方差為200,則|x-y|的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一個(gè)四棱錐的側(cè)棱長都相等,底面是正方形,其正(主)視圖如圖所示,該四棱錐的體積是( 。
A、8
B、
8
3
C、
4
3
3
D、
4
2
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

計(jì)算:
(1)(
1
27
 -
1
3
+log3
5
8
)+log3
8
5
)-(1-0.5)0
(2)3 1+log35-2 4+log23-log61.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列選項(xiàng)敘述錯(cuò)誤的是( 。
A、命題“若x≠1,則x2-3x+2≠0”的逆否命題是“若x2-3x+2=0,則x=1”
B、“x>2”是“x2-3x+2>0”的充分不必要條件
C、若命題p:?x∈R,x2+x十1≠0,則?p:?x∈R,x2+x+1=0
D、若p∨q為真命題,則p,q均為真命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖為一個(gè)幾何體的三視圖,尺寸如圖所示(不考慮接觸點(diǎn)),
(1)畫出這個(gè)幾何體的直觀圖;
(2)求這個(gè)幾何體的體積(結(jié)果保留根號(hào)、π).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合M={x|2x
1
2
}
N={x|y=
3-x
}
,則M∩N=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)P,Q為兩個(gè)非空實(shí)數(shù)集合,定義集合P+Q={x|x=a+b,a∈P,b∈Q},若集合P={0,1,2},Q={1,2,3},則集合P+Q中所有元素之和為
 

查看答案和解析>>

同步練習(xí)冊答案