精英家教網 > 高中數學 > 題目詳情
20.在極坐標系中,曲線C:ρ=2acosθ(a>0),l:ρcos(θ-$\frac{π}{3}$)=$\frac{3}{2}$,C與l有且只有一個公共點,求a.

分析 把極坐標方程化為直角坐標方程,利用直線與圓相切的充要條件即可得出.

解答 解:曲線C:ρ=2acosθ(a>0),即ρ2=2aρcosθ(a>0),∴x2+y2=2ax,配方可得:C的直角坐標方程為(x-a)2+y2=a2
直線l:ρcos(θ-$\frac{π}{3}$)=$\frac{3}{2}$,展開為$\frac{1}{2}ρcosθ$+$\frac{\sqrt{3}}{2}ρsinθ$=$\frac{3}{2}$,可得直角坐標方程:$x+\sqrt{3}y-3=0$.
由直線與圓相切可得:$\frac{\left|a-3\right|}{2}=a$,a>0.
解得:a=1.

點評 本題考查了極坐標方程化為直角坐標方程、直線與圓相切的充要條件、點到直線的距離公式,考查了推理能力與計算能力,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

10.設a,b,c,d都是正數,求證:(ab+cd)(ac+bd)≥4abcd.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

11.已知函數f(x)=2sin(ωx+$\frac{π}{6}}$)(ω>0)與函數g(x)=cos(2x+φ)(|φ|<$\frac{π}{2}}$)的對稱軸完全相同,則φ=-$\frac{π}{3}$.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

8.已知定義在(-∞,+∞) 上的函數f(x)=$\left\{\begin{array}{l}{{x}^{2}-2x.x≥0}\\{f(x+2),x<0}\end{array}\right.$,則方程f(x)+1=log4|x|的實數解的個數是6.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

15.求下列雙曲線的標準方程.
(1)與雙曲線$\frac{{x}^{2}}{16}$-$\frac{{y}^{2}}{4}$=1有公共焦點,且過點(3$\sqrt{2}$,2)的雙曲線;
(2)以橢圓3x2+13y2=39的焦點為焦點,以直線y=±$\frac{x}{2}$為漸近線的雙曲線.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

5.已知△ABC的三內角A,B,C所對的邊分別是a,b,c,△ABC的面積S=$\frac{{{a^2}+{b^2}-{c^2}}}{4}$且sinA=$\frac{3}{5}$.
(1)求sinB;
(2)若邊c=5,求△ABC的面積S.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

12.設命題p:x2-5x+6≤0;命題q:(x-m)(x-m-2)≤0,若¬p是¬q的必要不充分條件,求實數m的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

9.設4個正數的和a1+a2+a3+a4=1,求證:$\frac{{a}_{1}^{2}}{{a}_{1}+{a}_{2}}$+$\frac{{a}_{2}^{2}}{{a}_{2}+{a}_{3}}$+$\frac{{a}_{3}^{2}}{{a}_{3}+{a}_{4}}$+$\frac{{a}_{4}^{2}}{{a}_{4}+{a}_{1}}$≥$\frac{1}{2}$.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

20.如圖,在直四棱柱ABCD-A1B1C1D1中,底面ABCD為直角梯形,∠ABC=∠DAB=$\frac{π}{2}$,AB=2$\sqrt{3}$,BC=2,AD=3,平面ABD1與棱CC1交于點P.
(Ⅰ)求證:BP∥AD1
(Ⅱ)若直線A1P與平面BDP所成角的正弦值為$\frac{3\sqrt{10}}{10}$,求AA1的長.

查看答案和解析>>

同步練習冊答案