5.已知△ABC的三內(nèi)角A,B,C所對的邊分別是a,b,c,△ABC的面積S=$\frac{{{a^2}+{b^2}-{c^2}}}{4}$且sinA=$\frac{3}{5}$.
(1)求sinB;
(2)若邊c=5,求△ABC的面積S.

分析 (1)利用余弦定理、三角形面積計算公式可得C,再利用同角三角函數(shù)基本關(guān)系式、三角形內(nèi)角和定理、和差公式即可得出.
(2)利用正弦定理、三角形面積計算公式即可得出.

解答 解:(1)由余弦定理有c2=a2+b2-2abcosC,∴a2+b2-c2=2abcosC,
則$S=\frac{{{a^2}+{b^2}-{c^2}}}{4}=\frac{abcosC}{2}$,又$S=\frac{1}{2}absinC$,
∴cosC=sinC,tanC=1,在△ABC中$C=\frac{π}{4}$,
∵$sinA=\frac{3}{5}<\frac{{\sqrt{2}}}{2}$,在△ABC中$0<A<\frac{π}{4}$或$\frac{3π}{4}<A<π$,但A+B+C=π,
∴$0<A<\frac{π}{4}$,
∴$cosA=\sqrt{1-{{sin}^2}A}=\sqrt{1-{{({\frac{3}{5}})}^2}}=\frac{4}{5}$,
sinB=$sin(A+\frac{π}{4})$=$\frac{\sqrt{2}}{2}$×$(\frac{3}{5}+\frac{4}{5})$=$\frac{7\sqrt{2}}{10}$.
(2)由正弦定理有$\frac{c}{sinC}=\frac{sinB}$,又c=5,∴$\frac{5}{{sin\frac{π}{4}}}=\frac{{\frac{{7\sqrt{2}}}{10}}}$,得b=7,
∴S=$\frac{1}{2}$bcsinA=$\frac{1}{2}×7×5×\frac{3}{5}$=$\frac{21}{2}$.

點評 本題考查了正弦定理余弦定理、三角形面積計算公式、同角三角函數(shù)基本關(guān)系式、三角形內(nèi)角和定理、和差公式,考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.我們把平面內(nèi)與直線垂直的非零向量稱為直線的法向量,在平面直角坐標(biāo)系中,利用求動點軌跡方程的方法,可以求出過點A(-2,3),且法向量為$\overrightarrow{n}$=(4,-1)的直線(點法式)方程為4×(x+2)+(-1)×(y-3)=0,化簡得4x-y+11=0,類比以上方法,在空間直角坐標(biāo)系中,經(jīng)過點B(-2,1,3),且法向量為$\overrightarrow{m}$=(3,-2,4)的平面方程化簡后為3x-2y+4z-4=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.下面給出的命題中:
①已知函數(shù)f(a)=$\int_0^a{cosx}$dx,則f($\frac{π}{2}}$)=1;
②“m=-2”是“直線(m+2)x+my+1=0與直線(m-2)x+(m+2)y-3=0相互垂直”的必要不充分條件;
③已知隨機(jī)變量ξ服從正態(tài)分布 N(0,σ2),且 P(-2≤ξ≤0)=0.4,則 P(ξ>2)=0.2;
④已知⊙C1:x2+y2+2x=0,⊙C2:x2+y2+2y-1=0,則這兩圓恰有2條公切線.
其中真命題的個數(shù)是( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.函數(shù)f(x)是[-1,1]上的減函數(shù),α、β是銳角三角形的兩個內(nèi)角,且α≠β,則下列不等式中正確的是( 。
A.f(sin α)>f(cos β)B.f(cos α)<f(cos β)C.f(cos α)>f(sin β)D.f(sin α)<f(sin β)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.在極坐標(biāo)系中,曲線C:ρ=2acosθ(a>0),l:ρcos(θ-$\frac{π}{3}$)=$\frac{3}{2}$,C與l有且只有一個公共點,求a.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.執(zhí)行如圖所示的程序框圖,若輸出的值為5040,則判斷框中可以填(  )
A.k<2015?B.k<2016?C.k<2017?D.k<2018?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.設(shè)U=R,A={x|x<1},B={x|x>m}.
(1)若∁UA⊆B,求實數(shù)m的取值范圍;
(2)若∁UA?B,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)f(x)=[ax2-(2a+1)x+2a+1]ex
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)設(shè)x>0,2a∈[3,m+1],f(x)≥b2a-1${e}^{\frac{1}{a}}$恒成立,求正數(shù)b的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.設(shè)a,b,c,d∈R,求證:對于任意p,q∈R,$\sqrt{(a-p)^{2}+(b-q)^{2}}$+$\sqrt{(c-p)^{2}+(d-q)^{2}}$≥$\sqrt{(a-c)^{2}+(b-d)^{2}}$.

查看答案和解析>>

同步練習(xí)冊答案