若sinα+cosα=m,且-
2
≤m<-1,則α角所在象限是( 。
A、第一象限B、第二象限
C、第三象限D、第四象限
考點:兩角和與差的正弦函數(shù)
專題:計算題
分析:利用兩角和的正弦公式化簡m=sinα+cosα=
2
sin(α+
π
4
),解三角不等式確定α的范圍,從而確定α所在的象限.
解答: 解:m=sinα+cosα=
2
sin(α+
π
4
),
∵-
2
≤m≤-1,∴-1≤sin(α+
π
4
)<-
2
2
,
∴-
4
+2kπ<α+
π
4
<-
π
4
+2kπ
∴-π+2kπ<α<2kπ-
π
2
,k∈z,
∴α是第三象限角,
故選:C.
點評:本題考查兩角和的正弦公式的應用以及三角函數(shù)不等式的解法,解題的關(guān)鍵是由三角函數(shù)的范圍確定角的范圍.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
sin2x+2sin2x
1+tanx
-2
3
cos2x+
3

(1)求函數(shù)f(x)的定義域;
(2)當x∈[-
π
6
π
3
]
時,求f(x)的值域;
(3)若f(x)=
2
3
,且x∈[
π
6
,
π
3
]
,求cos2x的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓E:
x2
a2
+
y2
b2
=1(a>b>0)上任意一點到兩焦點距離之和為2
5
,離心率為
5
5
,左、右焦點分別為F1、F2,點P是右準線上任意一點,過F2作直線PF2的垂線F2Q交橢圓于Q點.
(1)求橢圓E的標準方程;
(2)證明:直線PQ與直線OQ的斜率之積是定值;
(3)點P的縱坐標為3,過P作動直線L與橢圓交于兩個不同點M,N,在線段MN上取點H(異于點M,N),滿足
MP
PN
=
MH
HN
,試證明點H恒在一定直線上.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(x+
1
x
)n
的展開式中第4項與第6項的二項式系數(shù)相等,則展開式中
1
x2
的系數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知直線m、n、l不重合,平面α、β不重合,下列命題正確的有
 

(1)若m?β,n?β,m∥α,n∥α,則α∥β
(2)若m?β,n?β,l⊥m,l⊥n,則l⊥β
(3)若α⊥β,m?α,n?β,則m⊥n;
(4)若m⊥α,m∥n,則n⊥α

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知某幾何體的三視圖如圖所示,則該幾何體的體積為( 。 
A、
1
2
B、1
C、
3
2
D、3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

tan(-1560°)的值為(  )
A、-
3
B、-
3
3
C、
3
3
D、
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)α∥β,P∈α,Q∈β,當P、Q分別在平面α、β內(nèi)運動時,線段PQ的中點X也隨著運動,則所有的動點X( 。
A、不共面
B、當且僅當P、Q分別在兩條平行直線上移動時才共面
C、當且僅當P、Q分別在兩條互相垂直的異面直線上移動時才共面
D、無論P、Q如何運動都共面

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

計算cos(-
16π
3
)=( 。
A、-
1
2
B、
1
2
C、-
3
2
D、
3
2

查看答案和解析>>

同步練習冊答案