1.設(shè)函數(shù)g(x)=x(x2-1),則g(x)在區(qū)間[0,1]上的最大值為( 。
A.-1B.0C.-$\frac{2\sqrt{3}}{9}$D.$\frac{\sqrt{3}}{3}$

分析 求出函數(shù)g(x)的導(dǎo)數(shù),解關(guān)于導(dǎo)函數(shù)的不等式,求出函數(shù)的單調(diào)區(qū)間,從而求出g(x)在[0,1]的最大值即可.

解答 解:g(x)=x3-x,x∈[0,1],
g′(x)=3x2-1,
令g′(x)>0,解得:x>$\frac{\sqrt{3}}{3}$,
令g′(x)<0,解得:x<$\frac{\sqrt{3}}{3}$,
故g(x)在[0,$\frac{\sqrt{3}}{3}$)遞減,在($\frac{\sqrt{3}}{3}$,1]遞增,
故g(x)的最大值是g(0)或g(1),
而g(0)=0,g(1)=0,
故函數(shù)g(x)在[0,1]的最大值是0,
故選:B.

點(diǎn)評 本題考查了函數(shù)的單調(diào)性、最值問題,考查導(dǎo)數(shù)的應(yīng)用,是一道基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.設(shè)△ABC的內(nèi)角A、B、C的對邊分別為a、b、c,且cosA=$\frac{3}{5}$,cosB=$\frac{5}{13}$,b=3,則c=( 。
A.$\frac{14}{5}$B.$\frac{7}{5}$C.$\frac{63}{20}$D.$\frac{33}{20}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.近年來,手機(jī)已經(jīng)成為人們?nèi)粘I钪胁豢扇鄙俚漠a(chǎn)品,手機(jī)的功能也日趨完善,已延伸到了各個(gè)領(lǐng)域,如拍照,聊天,閱讀,繳費(fèi),購物,理財(cái),娛樂,辦公等等,手機(jī)的價(jià)格差距也很大,為分析人們購買手機(jī)的消費(fèi)情況,現(xiàn)對某小區(qū)隨機(jī)抽取了200人進(jìn)行手機(jī)價(jià)格的調(diào)查,統(tǒng)計(jì)如下:
年齡         價(jià)格5000元及以上3000元-4999元1000元-2999元1000元以下
45歲及以下1228664
45歲以上3174624
(Ⅰ)完成關(guān)于人們使用手機(jī)的價(jià)格和年齡的2×2列聯(lián)表,再判斷能否在犯錯(cuò)誤的概率不超過0.025的前提下,認(rèn)為人們使用手機(jī)的價(jià)格和年齡有關(guān)?
(Ⅱ)從樣本中手機(jī)價(jià)格在5000元及以上的人群中選擇3人調(diào)查其收入狀況,設(shè)3人中年齡在45歲及以下的人數(shù)為隨機(jī)變量X,求隨機(jī)變量X的分布列及數(shù)學(xué)期望.
附K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
P(K2≥k)0.050.0250.0100.001
k3.8415.0246.63510.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.在銳角△ABC中,角A、B、C所對的邊長分別為a、b、c,向量$\overrightarrow{m}$=(1,cosB),$\overrightarrow{n}$=(sinB,-$\sqrt{3}$),且$\overrightarrow{m}$⊥$\overrightarrow{n}$,若△ABC面積為10$\sqrt{3}$,b=7,則△ABC的周長為(  )
A.10B.20C.26D.40

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.設(shè)F為拋物線C:y2=3x的焦點(diǎn),過F作直線交拋物線C于A、B兩點(diǎn),O為坐標(biāo)原點(diǎn),則△OAB面積的最小值為$\frac{9}{8}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知AB是⊙O的直徑,且AB=4,PA垂直⊙O所在的平面,C是圓周上的點(diǎn),且AC=2,則點(diǎn)C到平面PAB的距離為$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知向量$\overrightarrow{a}$、$\overrightarrow$、$\overrightarrow{c}$,滿足$\overrightarrow{a}$+$\overrightarrow$+$\overrightarrow{c}$=0,已知$\overrightarrow{a}$、$\overrightarrow$成60°角,且$\overrightarrow{a}$、$\overrightarrow$的大小分別為2和4,則$\overrightarrow{c}$的大小為( 。
A.6B.2C.2$\sqrt{5}$D.2$\sqrt{7}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.定長為l($l>\frac{{2{b^2}}}{a}$)的線段AB的兩個(gè)端點(diǎn)都在雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$(a>0,b>0)的右支上,則AB中點(diǎn)M的橫坐標(biāo)的最小值為(  )
A.$\frac{a(2a+l)}{{2\sqrt{{a^2}+{b^2}}}}$B.$\frac{a+l}{{2\sqrt{{a^2}+{b^2}}}}$C.$\frac{a(l-2a)}{{2\sqrt{{a^2}+{b^2}}}}$D.$\frac{al}{{2\sqrt{{a^2}+{b^2}}}}$

查看答案和解析>>

同步練習(xí)冊答案