20.在等差數(shù)列{an}中,a7=8,前7項(xiàng)和S7=42,則其公差是(  )
A.-$\frac{1}{3}$B.-$\frac{2}{3}$C.$\frac{1}{3}$D.$\frac{2}{3}$

分析 直接由已知結(jié)合等差數(shù)列的通項(xiàng)公式和前n項(xiàng)和列式求得公差.

解答 解:設(shè)等差數(shù)列{an}的首項(xiàng)為a1,公差為d,
由a7=8,S7=42,得
$\left\{\begin{array}{l}{{a}_{1}+6d=8}\\{7{a}_{1}+\frac{7×6}{2}d=42}\end{array}\right.$,解得:$\left\{\begin{array}{l}{{a}_{1}=4}\\{d=\frac{2}{3}}\end{array}\right.$.
故選:D.

點(diǎn)評 本題考查了等差數(shù)列的通項(xiàng)公式,考查了等差數(shù)列的前n項(xiàng)和,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知MN是橢圓$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{9}$=1中垂直于長軸的動(dòng)弦,A、B是橢圓長軸的兩個(gè)端點(diǎn),求直線MA和NB交點(diǎn)P的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.如圖1,在平面多邊形ABEDC中,△ABC是正三角形,四邊形BCDE是矩形,AB=2,CD=2$\sqrt{3}$,沿BC將△ABC折起,組成四棱錐A′-BCDE,如圖2,F(xiàn)、G分別是A′B,A′E的中點(diǎn).
(1)求證:A′C∥平面BDG;
(2)當(dāng)三棱錐A′-BCE的體積最大時(shí),求平面BCE與平面CEF的夾角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.如圖所示,橢圓C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}$=1(a>b>0)與直線AB:y=$\frac{1}{2}$x+1相切于點(diǎn)A.
(1)求a,b滿足的關(guān)系式,并用a,b表示點(diǎn)A的坐標(biāo);
(2)設(shè)F是橢圓的右焦點(diǎn),若△AFB是以F為直角頂點(diǎn)的等腰直角三角形,求橢圓C的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.化簡以下各式:
①$\overrightarrow{AB}+\overrightarrow{BC}+\overrightarrow{CA}$;
②$\overrightarrow{AB}-\overrightarrow{AC}+\overrightarrow{BD}-\overrightarrow{CD}$;
③$\overrightarrow{FQ}+\overrightarrow{QP}+\overrightarrow{EF}$-$\overrightarrow{EP}$
④$\overrightarrow{OA}-\overrightarrow{OB}+\overrightarrow{AB}$
其結(jié)果是為零向量的個(gè)數(shù)是( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.設(shè)函數(shù)f(x)=x+$\frac{1}{x}$+alnx,其中a∈R.
(Ⅰ)設(shè)f(x)的極小值點(diǎn)為x=t,請將a用t表示;
(Ⅱ)記f(x)的極小值為g(t),證明:
(1)g(t)=g($\frac{1}{t}$);
(2)函數(shù)y=g(t)恰有兩個(gè)零點(diǎn),且互為倒數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.設(shè)冪函數(shù)f(x)的圖象經(jīng)過點(diǎn)(8,4),則函數(shù)f(x)的奇偶性為偶函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知集合A={-1,0,1,2,3}B={x|x2>1},則A∩∁RB=( 。
A.{0}B.{-1,0,1}C.{-1,1,2,3}D.{-1,0,1,2,3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.若復(fù)數(shù)z滿足z+2i=$\frac{2i}{1-i}$,則在復(fù)平面內(nèi),z對應(yīng)的點(diǎn)的坐標(biāo)是( 。
A.(-1,-1)B.(-1,1)C.(1,-1)D.(1,1)

查看答案和解析>>

同步練習(xí)冊答案