已知a,b,l表示三條不同的直線,α,β,γ表示三個不同的平面,有下列五個命題:
①若α∩β=a,β∩γ=b,且a∥b,則α∥γ;
②若a,b相交,且都在α,β外,a∥α,a∥β,b∥α,b∥β,則α∥β;
③若α⊥β,α∩β=a,b?β,a⊥b,則b⊥α;
④若a?α,b?α,l⊥a,l⊥b,則l⊥α;
⑤若a∥b,b∥α,則a∥α;
其中正確命題的個數(shù)是(  )
A、1B、2C、3D、4
考點:空間中直線與直線之間的位置關(guān)系
專題:空間位置關(guān)系與距離
分析:由線面位置關(guān)系逐個選項驗證,正確的找定理,錯誤的可舉反例即可.
解答: 解:命題①當(dāng)α,β,γ為三棱柱的三個側(cè)面時,完全滿足α∩β=a,β∩γ=b,且a∥b,當(dāng)α和γ相交,故錯誤;
命題②若a,b相交,則a、b確定平面,由a∥α,a∥β,b∥α,b∥β易判α∥γ且β∥γ,可得α∥β,故正確;
命題③若α⊥β,α∩β=a,b?β,a⊥b,則必有b⊥α,此性質(zhì)為平面與平面垂直的性質(zhì),故正確;
命題④當(dāng)a?α,b?α,l⊥a,l⊥b時,需保證a和b相交才有l(wèi)⊥α,故錯誤;
命題⑤若a∥b,b∥α,則a∥α或a?α,故錯誤.
故正確的為②③,個數(shù)為2
故選:B
點評:本題考查空間線面位置關(guān)系的判斷,屬基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

下面四個命題:
①分別在兩個平面內(nèi)的直線平行
②若兩個平面平行,則其中一個平面內(nèi)的任何一條直線必平行于另一個平面
③如果一個平面內(nèi)的兩條直線平行于另一個平面,則這兩個平面平行
④如果一個平面內(nèi)的任何一條直線平行于另一個平面,則這兩個平面平行
其中正確的命題是(  )
A、①②B、②④C、①③D、②③

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定點A、B,且|AB|=6,動點P滿足|PA|-|PB|=4,則PA的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在四面體ABCD中,E、F分別是AB、AC的中點,過直線EF做平面α,分別交BD于M、交CD于N.求證:EF∥MN.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

從一批棉花中抽取20根棉花纖維,測其長度(單位:mm),得頻率分布直方圖如圖,則此樣本在區(qū)間[40,50]上的頻數(shù)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在棱長為4的正方體ABCD-A1B1C1D1中,M、N分別是棱AB、BC上的點,且BM=BN,點P是棱A1D1上一點,A1P=1,過P、M、N的平面與棱C1D1交于點Q,求PQ的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若向量
a
b
滿足:|
a
|=1,(
a
+
b
)⊥
a
,(2
a
+
b
)⊥
b
,則|
b
|=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知θ∈R,實數(shù)x1、x2、x3、x4滿足cosθ≤x1≤2cosθ,sinθ≤x2≤2sinθ,2x3+x4-6=0,則|x1-x3|2+|x2-x4|2的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={0,1,2,3},B={-1,-2,0,2},f是從A到B的一一映射,則滿足“0的像”與“1的像”互為相反數(shù)的映射的個數(shù)為
 

查看答案和解析>>

同步練習(xí)冊答案