17.設(shè)集合A={x|x2-1>0},B={x|log2x>0},則A∩B=( 。
A.{x|x>0}B.{x|x>1}C.{x|x<-1}D.{x|x<-1或x>1}

分析 分別求出A與B中不等式的解集確定出A與B,找出A與B的交集即可.

解答 解:由A中不等式變形得:(x+1)(x-1)>0,
解得:x<-1或x>1,即A={x|x<-1或x>1},
由B中不等式變形得:log2x>0=log21,
解得:x>1,即B={x|x>1},
則A∩B={x|x>1},
故選:B.

點評 此題考查了交集及其運算,熟練掌握交集的定義是解本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.計算(lg$\frac{1}{4}$-lg25)×100${\;}^{\frac{1}{2}}$-20.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.如圖,已知平面ABB1N⊥平面BB1C1C,四邊形BB1C1C,是矩形,ABB1N是梯形,且AN⊥AB,AN∥BB1,AB=BC=AN=4,BB1=8.
(1)求證:BN⊥平面C1B1N;
(2)若M為AB中點,P是BC邊上一點,且滿足$\frac{BP}{PC}$=$\frac{1}{3}$,求證:MP∥平面CNB1;
(3)求多面體ABB1NCC1的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.設(shè)等比數(shù)列{an}的前n項和為Sn,若a1=3,a4=24,則S6=( 。
A.93B.189C.99D.195

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知函數(shù)f(x)=2sin2($\frac{π}{4}$+x)-$\sqrt{3}$cos2x-1
(1)求f(x)的單調(diào)增區(qū)間和對稱中心坐標(biāo);
(2)將函數(shù)f(x)的圖象向右平移m個單位,使函數(shù)關(guān)于點($\frac{π}{3}$,0)對稱,求m的最小正值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.設(shè)全集u={1,2,3,4,5,6,7,8,9},集合A={1,2,3,4,5,6},B={4,5,6,7,8}
(1)求A∩B
(2)求A∪B
(3)求∁uA∪∁uB
(4)求∁uA∩B.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.如果p:x>2,q:x>3,那么p是q的必要不充分條件.(從“充分不必要”、“必要不充分”、“充要”、“既不充分也不必要”中選出適當(dāng)?shù)囊环N填空)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.在直角坐標(biāo)系xOy中,以坐標(biāo)原點為極點,x軸正半軸為極軸建立極坐標(biāo)系,圓C的極坐標(biāo)方程為ρ=2$\sqrt{2}$sin(θ-$\frac{π}{4}$),直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=-\frac{\sqrt{2}}{3}t}\\{y=-1+\frac{\sqrt{2}}{4}t}\end{array}\right.$,直線l和圓C交于A,B兩點,P是圓C上不同于A,B的任意一點
(1)求圓C的直角坐標(biāo)方程;
(2)求△PAB面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知函數(shù)f(x)=$\frac{x+2}{x}$
(1)寫出函數(shù)f(x)的定義域和值域;
(2)證明函數(shù)f(x)在(0,+∞)為單調(diào)遞減函數(shù);并求f(x)在x∈[2,8]上的值域.

查看答案和解析>>

同步練習(xí)冊答案