7.下列各項(xiàng)中表示同一函數(shù)的是(  )
A.y=2log2x與y=log2x2B.y=x0與y=1
C.y=$\sqrt{{x}^{2}}$與y=$\root{3}{{x}^{3}}$D.y=x與y=logaax(a>0且a≠1)

分析 兩個(gè)函數(shù)的定義域相同,且對(duì)應(yīng)法則一致,這兩個(gè)函數(shù)是同一函數(shù).

解答 解:在A中,y=2log2x的定義域?yàn)椋?,+∞),
y=log2x2的定義域?yàn)閧x|x≠0},
∴y=2log2x與y=log2x2不表示同一函數(shù),故A錯(cuò)誤;
在B中,y=x0的定義域?yàn)閧x|x≠0},y=1的定義域?yàn)镽,
∴y=x0與y=1不是同一函數(shù),故B錯(cuò)誤;
在C中,y=$\sqrt{{x}^{2}}$與y=$\root{3}{{x}^{3}}$的定義域都是R,
$y=\sqrt{{x}^{2}}$=$\left\{\begin{array}{l}{x,x≥0}\\{-x,x<0}\end{array}\right.$,y=$\root{3}{{x}^{3}}$=x,
∴y=$\sqrt{{x}^{2}}$與y=$\root{3}{{x}^{3}}$不是同一函數(shù),故C錯(cuò)誤;
在D中,y=x與y=logaax(a>0且a≠1)的定義域相同,都是R,
且y=$lo{g}_{a}{a}^{x}$=x,(a>0且a≠1),
∴y=x與y=logaax(a>0且a≠1)是同一函數(shù).
故選:D.

點(diǎn)評(píng) 本題考查兩個(gè)函數(shù)是否是同一函數(shù)的判斷,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意同一函數(shù)的定義的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.某廠在計(jì)劃期內(nèi)要安排生產(chǎn)甲、乙兩種產(chǎn)品,這些產(chǎn)品分別需要在A、B、C、D四種不同的設(shè)備上加工,按工藝規(guī)定,產(chǎn)品甲和產(chǎn)品乙在各設(shè)備上需要的加工臺(tái)時(shí)數(shù)于下表給出.已知各設(shè)備在計(jì)劃期內(nèi)有效臺(tái)時(shí)數(shù)分別是12,8,16,12(一臺(tái)設(shè)備工作一小時(shí)稱(chēng)為一臺(tái)時(shí)),該廠每生產(chǎn)一件產(chǎn)品甲可得利潤(rùn)2元,每生產(chǎn)一件產(chǎn)品乙可得利潤(rùn)3元,問(wèn)應(yīng)如何安排生產(chǎn)計(jì)劃,才能獲得最大利潤(rùn)??
  設(shè)備
產(chǎn)品
ABCD
2140
2204

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.已知復(fù)數(shù)z=$\frac{i-2}{1+i}$,則$\overline{z}$在復(fù)平面上對(duì)應(yīng)的點(diǎn)位于( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.隨機(jī)抽取某中學(xué)甲乙兩班各10名同學(xué),測(cè)量他們的身高(單位:cm),獲得身高數(shù)據(jù)的莖葉圖如圖.(s2=$\frac{1}{n}$[(x1-$\overline{x}$)2+(x2-$\overline{x}$)2+…+(xn-$\overline{x}$)2])
(Ⅰ)根據(jù)莖葉圖判斷哪個(gè)班的平均身高較高;
(Ⅱ)計(jì)算甲班的樣本方差;
(Ⅲ)現(xiàn)從乙班這10名同學(xué)中隨機(jī)抽取兩名身高不低于173cm的同學(xué),求身高為176cm的同學(xué)被抽中的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.命題“若x2-3x-4=0,則x=4”的逆否命題為“若x≠4,則x2-3x-4≠0”.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.已知f(sinx)=sin3x.則f(cosx)=(  )
A.sin3xB.cos3xC.-sin3xD.-cos3x

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知等差數(shù)列{an}的前n項(xiàng)和為Sn,且a7=16,S6=33,等比數(shù)列{bn}滿足${b_1}=\frac{1}{2}$,點(diǎn)(2,b2),(1,b3),落在直線x-8y=0上.
(1)求數(shù)列{an},{bn}的通項(xiàng)公式;
(2)已知數(shù)列{an+bn}的前n項(xiàng)和為T(mén)n

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.給定函數(shù)①y=$\sqrt{x}$;②y=$\frac{1}{x}$;③y=|x-1|;④y=(x+1)2,其中在區(qū)間(0,1)上單調(diào)遞減的函數(shù)的序號(hào)是( 。
A.①②B.②③C.③④D.①④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.若函數(shù)f(x)=ex(2x-1)-mx+m有且只有一個(gè)零點(diǎn),則m的取值范圍是1或4${e}^{\frac{3}{2}}$或m≤0.

查看答案和解析>>

同步練習(xí)冊(cè)答案