14.如圖,在三棱錐A-BCD中,側(cè)面ABD⊥底面BCD,BC⊥CD,AB=AD=4,BC=6,BD=4$\sqrt{3}$,直線AC與底面BCD所成角的大小為( 。
A.30°B.45°C.60°D.90°

分析 面ABD⊥底面BCD,AB=AD,取DB中點(diǎn)O,則AO⊥面BCD,即∠ACO就是直線AC與底面BCD所成角,解三角形即可求得角的大。

解答 解:∵面ABD⊥底面BCD,AB=AD,取DB中點(diǎn)O,則AO⊥面BCD,
∴∠ACO就是直線AC與底面BCD所成角.
∵BC⊥CD,BC=6,BD=4$\sqrt{3}$,∴CO=2$\sqrt{3}$,
在Rt△ADO中,OD=$\sqrt{A{D}^{2}-O{D}^{2}}=2$,
在Rt△AOC中,tan∠ACO=$\frac{AO}{OC}=\frac{\sqrt{3}}{3}$.
直線AC與底面BCD所成角的大小為300
故選:A.

點(diǎn)評(píng) 本題考查了直線與平面所成角的求解,找到所求的角是關(guān)鍵,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.(1)解不等式3${P}_{x}^{3}$≤2${P}_{x+1}^{2}$+6${P}_{x}^{2}$;
(2)已知$\frac{1}{{C}_{5}^{m}}$-$\frac{1}{{C}_{6}^{m}}$=$\frac{7}{10{C}_{7}^{m}}$,求${C}_{8}^{m}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.函數(shù)f(x)=2sin(2x+$\frac{π}{6}$)的圖象為M,則下列結(jié)論中正確的是(  )
A.圖象M關(guān)于直線x=-$\frac{π}{12}$對(duì)稱
B.由y=2sin2x的圖象向左平移$\frac{π}{6}$得到M
C.圖象M關(guān)于點(diǎn)(-$\frac{π}{12}$,0)對(duì)稱
D.f(x)在區(qū)間(-$\frac{π}{12}$,$\frac{5π}{12}$)上遞增

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.已知函數(shù)$f(x)=\left\{\begin{array}{l}|{{{log}_4}x}|,\;0<x≤4\\{x^2}-10x+25,\;x>4.\end{array}\right.$若a,b,c,d是互不相同的正數(shù),且f(a)=f(b)=f(c)=f(d),則abcd的取值范圍是(  )
A.(24,25)B.(18,24)C.(21,24)D.(18,25)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.設(shè)$\overrightarrow{{e}_{1}}$、$\overrightarrow{{e}_{2}}$是兩個(gè)不共線的向量,已知$\overrightarrow{AB}$=2$\overrightarrow{{e}_{1}}$+k$\overrightarrow{{e}_{2}}$,$\overrightarrow{BC}$=$\overrightarrow{{e}_{1}}$+3$\overrightarrow{{e}_{2}}$,$\overrightarrow{CD}$=2$\overrightarrow{{e}_{1}}$-$\overrightarrow{{e}_{2}}$,若A、B、D三點(diǎn)共線,求k的值為$\frac{4}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知$sinα+cosα=\frac{1}{5}$,求:
(1)sinα-cosα的值;
(2)若α是△ABC的內(nèi)角,判斷△ABC的形狀.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.函數(shù)$y=sin(2x+\frac{π}{3})$的圖象( 。
A.關(guān)于點(diǎn)$[{\frac{π}{3},0}]$對(duì)稱B.關(guān)于直線$x=\frac{π}{4}$對(duì)稱
C.關(guān)于點(diǎn)$[{\frac{π}{4},0}]$對(duì)稱D.關(guān)于直線$x=\frac{π}{3}$對(duì)稱

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2015-2016學(xué)年江西省南昌市高二理下學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:填空題

已知函數(shù),對(duì)于任意,都存在,使得,則的最小值為________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.不等式1+2014x+(1+2015x)2015>x2015的解集是{x|x>-$\frac{1}{2014}$}.

查看答案和解析>>

同步練習(xí)冊(cè)答案