【題目】近年來(lái)我國(guó)電子商務(wù)行業(yè)迎來(lái)發(fā)展的新機(jī)遇,與此同時(shí),相關(guān)管理部門(mén)推出了針對(duì)電商商品和服務(wù)的評(píng)價(jià)體系.現(xiàn)從評(píng)價(jià)系統(tǒng)中選出200次成功交易,并對(duì)其評(píng)價(jià)進(jìn)行統(tǒng)計(jì),對(duì)商品好評(píng)率為,對(duì)服務(wù)好評(píng)率為,其中對(duì)商品和服務(wù)都做出好評(píng)的交易為80次.

1)是否可以在犯錯(cuò)誤率不超過(guò)0.1%的前提下,認(rèn)為商品好評(píng)與服務(wù)好評(píng)有關(guān)?

2)若針對(duì)商品的好評(píng)率,采用分層抽樣的方式從這200次交易中取出5次交易,并從中選擇兩次交易進(jìn)行客戶(hù)回訪(fǎng),求只有一次好評(píng)的概率.

注:1.

2.

【答案】(1)見(jiàn)解析;(2).

【解析】試題分析:(1)由已知列出關(guān)于商品和服務(wù)評(píng)價(jià)的2×2列聯(lián)表,代入公式求得k2的值,對(duì)應(yīng)數(shù)表得答案;
(2)采用分層抽樣的方式從這200次交易中取出5次交易,則好評(píng)的交易次數(shù)為3次,不滿(mǎn)意的次數(shù)為2次,利用枚舉法得到從5次交易中,取出2次的所有取法,查出其中只有一次好評(píng)的情況數(shù),然后利用古典概型概率計(jì)算公式求得只有一次好評(píng)的概率.

試題解析:

(1)由題意可得關(guān)于商品評(píng)價(jià)和服務(wù)評(píng)價(jià)的列聯(lián)表:

對(duì)服務(wù)好評(píng)

對(duì)服務(wù)不滿(mǎn)意

合計(jì)

對(duì)商品好評(píng)

80

40

120

對(duì)商品不滿(mǎn)意

70

10

80

合計(jì)

150

50

200

所以

所以可以在犯錯(cuò)誤概率不超過(guò)0.1%的前提下,認(rèn)為商品好評(píng)與服務(wù)好評(píng)有關(guān).

(2)若針對(duì)商品的好評(píng)率,采用分層抽樣的方式從這200次交易中取出5次交易,則好評(píng)的交易次數(shù)為3次,不滿(mǎn)意的次數(shù)為2次,令好評(píng)的交易為,不滿(mǎn)意的交易為.

從5次交易中,取出2次的所有取法.共計(jì)10種情況.

其中只有一次好評(píng)的情況是,共計(jì)6種情況.

因此,只有一次好評(píng)的概率為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知A,B,C為銳角△ABC的內(nèi)角, =(sinA,sinBsinC), =(1,﹣2),
(1)tanB,tanBtanC,tanC能否構(gòu)成等差數(shù)列?并證明你的結(jié)論;
(2)求tanAtanBtanC的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在一次購(gòu)物抽獎(jiǎng)活動(dòng)中,假設(shè)某10張券中有一等獎(jiǎng)券1張,可獲價(jià)值50元的獎(jiǎng)品;有二等獎(jiǎng)券3張,每張可獲價(jià)值10元的獎(jiǎng)品;其余6張沒(méi)有獎(jiǎng),某顧客從此10張券中任抽2張,求:
(Ⅰ)該顧客中獎(jiǎng)的概率;
(Ⅱ)該顧客獲得的獎(jiǎng)品總價(jià)值ξ(元)的概率分布列和期望Eξ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形為等腰梯形, ,將沿折起,使得平面平面的中點(diǎn),連接 (如圖2).

(1)求證: ;

(2)求直線(xiàn)與平面所成的角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè),又是一個(gè)常數(shù),已知時(shí), 只有一個(gè)實(shí)根,當(dāng)時(shí), 有三個(gè)相異實(shí)根,給出下列命題:

有一個(gè)相同的實(shí)根;

有一個(gè)相同的實(shí)根;

的任一實(shí)根大于的任一實(shí)根;

的任一實(shí)根小于的任一實(shí)根.

其中正確命題的個(gè)數(shù)為( )

A. 3 B. 2 C. 1 D. 0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列{an}滿(mǎn)足a1=1,an+1+an= ,n∈N*
(Ⅰ)求a2 , a3 , a4
(Ⅱ)猜想數(shù)列{an}的通項(xiàng)公式,并用數(shù)學(xué)歸納法證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在直角坐標(biāo)系為極點(diǎn), 軸正半軸為極軸建立極坐標(biāo)系,的極坐標(biāo)方程為直線(xiàn)的參數(shù)方程為為參數(shù)),直線(xiàn)和圓交于兩點(diǎn), 是圓上不同于的任意一點(diǎn)

(1)求圓心的極坐標(biāo);

(2)求點(diǎn)到直線(xiàn)的距離的最大值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】以平面直角坐標(biāo)系的原點(diǎn)為極點(diǎn), 軸正半軸為極軸且取相同的單位長(zhǎng)度建立極坐標(biāo)系.已知點(diǎn)的參數(shù)方程為為參數(shù)),點(diǎn)在曲線(xiàn)上.

1)求在平面直角坐標(biāo)系中點(diǎn)的軌跡方程和曲線(xiàn)的普通方程;

2)求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)f(x)=lnx﹣ax+ ﹣1. (Ⅰ)當(dāng)a=1時(shí),求曲線(xiàn)f(x)在x=1處的切線(xiàn)方程;
(Ⅱ)當(dāng)a= 時(shí),求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅲ)在(Ⅱ)的條件下,設(shè)函數(shù)g(x)=x2﹣2bx﹣ ,若對(duì)于x1∈[1,2],x2∈[0,1],使f(x1)≥g(x2)成立,求實(shí)數(shù)b的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案