13.如圖,網(wǎng)格紙的各小格都是邊長為1的正方形,粗線畫出的是一個三棱錐的三視圖,則該三棱錐的最長棱長為( 。
A.3$\sqrt{2}$B.3$\sqrt{3}$C.3$\sqrt{5}$D.3$\sqrt{6}$

分析 由三視圖可知:該幾何體為如圖所示的三棱錐P-ABC,其中PO⊥底面ABC,OB∥AC,AC⊥BC.利用給出的位置關(guān)系與數(shù)據(jù)即可判斷出結(jié)論.

解答 解:由三視圖可知:該幾何體為如圖所示的三棱錐P-ABC,
其中PO⊥底面ABC,OB∥AC,AC⊥BC.
PO=OB=BC=3,AC=6.
因此三棱錐中的最長棱長為AB=$\sqrt{{6}^{2}+{3}^{2}}$=3$\sqrt{5}$.
故選:C.

點(diǎn)評 本題考查了三視圖的應(yīng)用、四棱錐的性質(zhì)、橢圓的定義與性質(zhì),考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.如圖△ABC中,點(diǎn)D在BC邊上,且AD⊥AC,AD=AC=$\sqrt{3}$,∠BAD=30°.
(1)求AB的長;
(2)求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.如圖,A,B,C為圓O上三點(diǎn),點(diǎn)B平分弧$\widehat{AC}$,點(diǎn)P為AC延長線上一點(diǎn),PQ是圓O的切線,切點(diǎn)為Q,BQ與AC相交于點(diǎn)D.
(1)求證:PD=PQ;
(2)若PC=1,AD=PD,求BD•QD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知Sn={A|A=(a1,a2,a3,…,an),ai=0或1,i=1,2…,n}(n≥2),對于U,V∈Sn,d(U,V)表示U,V中相對應(yīng)位置上的數(shù)不同的個數(shù).
(1)若U=(1,1,…,1)則對于所有V∈Sn,全部d(U,V)之和D=n•2n-1
(2)對于所有U,V∈Sn,全部d(U,V)之和D=n•22n-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知a∈R,函數(shù)f(x)=x|x-a|-2x+a2
(Ⅰ)若a>2,解關(guān)于x的方程f(x)=a2-2a;
(Ⅱ)若a∈[-2,4],求函數(shù)f(x)在閉區(qū)間[-3,3]上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.某幾何體的三視圖如圖所示,若該幾何體的各個頂點(diǎn)均在同一個球面上,則該球體的表面積為(  )
A.B.C.D.12π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知函數(shù)f(x)=x2-|x2-ax-2|,a為實(shí)數(shù).
(Ⅰ)當(dāng)a=1時,求函數(shù)f(x)在[0,3]上的最小值和最大值;
(Ⅱ)若函數(shù)f(x)在(-∞,-1)和(2,+∞)上單調(diào)遞增,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知向量$\overrightarrow{a}$=($\frac{1}{2}$,$\frac{1}{2}$sinx+$\frac{\sqrt{3}}{2}$cosx)和向量$\overrightarrow$=(1,f(x)),且$\overrightarrow{a}$∥$\overrightarrow$.
(1)求函數(shù)f(x)的最小正周期和最大值;
(2)已知△ABC的三個內(nèi)角分別為A、B、C,若有f(A-$\frac{π}{3}$)=$\sqrt{3}$,sinB=$\frac{\sqrt{21}}{7}$,求sinC的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知函數(shù)f(x)=$\left\{\begin{array}{l}{a^x},x<0\\(a-3)x+4a,x≥0\end{array}$滿足對任意x1≠x2,都有$\frac{{f({x_1})-f({x_2})}}{{{x_2}-{x_1}}}$>0成立,則實(shí)數(shù)a的取值范圍是$(0,\frac{1}{4}]$.

查看答案和解析>>

同步練習(xí)冊答案