【題目】如圖,在等腰梯形中,,,,將沿折起,使平面平面.

1)若是側棱中點,求證:平面;

2)求直線與平面所成角的正弦值.

【答案】1)證明見解析;(2.

【解析】

1)取的中點,連接,證明四邊形為平行四邊形,可得出,再根據(jù)線面平行的判定定理即可證明平面

2)先利用面面垂直的性質定理得出平面,建立空間坐標系,求出平面的法向量,利用向量法即可求直線與平面所成角的正弦值.

1)在梯形中,,,,

,,,

的中點,連接,則,且

則四邊形為平行四邊形,,

平面,平面,平面

2)∵,平面平面,面,,,

為坐標原點,以、、分別為、軸,建立空間直角坐標系如圖:

,,,

,,

設平面的法向量為,

則由,令,則,即

設直線與平面所成的角為,

.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,三棱柱中, 平面, , 分別為, 的中點.

(1)求證: 平面;

(2)若平面平面,求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,底面為矩形,平面平面.已知.

1)證明:平面;

2)證明:;

3)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了調查觀眾對電影復仇者聯(lián)盟4”結局的滿意程度,研究人員在某電影院隨機抽取了1000名觀眾作調查,所得結果如下所示,其中不喜歡復仇者聯(lián)盟4”的結局的觀眾占被調查觀眾總數(shù)的.

男性觀眾

女性觀眾

總計

喜歡復仇者聯(lián)盟4”的結局

400

不喜歡復仇者聯(lián)盟4”的結局

200

總計

(Ⅰ)完善上述列聯(lián)表;

(Ⅱ)是否有99.9%的把握認為觀眾對電影復仇者聯(lián)盟4”結局的滿意程度與性別具有相關性?

附:

0.100

0.050

0.010

0.001

2.706

3.841

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓Cx2+y2+2x2y+10和拋物線Ey22pxp0),圓C與拋物線E的準線交于MN兩點,MNF的面積為p,其中FE的焦點.

1)求拋物線E的方程;

2)不過原點O的動直線l交該拋物線于AB兩點,且滿足OAOB,設點Q為圓C上任意一動點,求當動點Q到直線l的距離最大時直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】以下五個命題中:

,則的取值范圍是;

不等式,對一切x恒成立,則實數(shù)的取值范圍為;

若橢圓的兩焦點為、,且弦點,則的周長為16;

若常數(shù),,成等差數(shù)列,則,,成等比數(shù)列;

⑤數(shù)列的前項和為=+21,則這個數(shù)列一定是等差數(shù)列.

所有正確命題的序號是_____________.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】甲與乙午覺醒來后,發(fā)現(xiàn)自己的手表因故停止轉動,于是他們想借助收音機,利用電臺整點報時確認時間.

(1)求甲等待的時間不多于10分鐘的概率;

(2)求甲比乙多等待10分鐘以上的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)討論函數(shù)的單調區(qū)間;

(2)若是曲線上的兩點,.問: 是否存在,使得直線的斜率等于?若存在,求出的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】福利彩票“雙色球”中紅球的號碼可以從01,02,03,…,32,33這33個二位號碼中選取,小明利用如圖所示的隨機數(shù)表選取紅色球的6個號碼,選取方法是從第1行第9列和第10列的數(shù)字開始從左到右依次選取兩個數(shù)字,則第四個被選中的紅色球號碼為( )

81 47 23 68 63 93 17 90 12 69 86 81 62 93 50 60 91 33 75 85 61 39 85

06 32 35 92 46 22 54 10 02 78 49 82 18 86 70 48 05 46 88 15 19 20 49

A. 12 B. 33 C. 06 D. 16

查看答案和解析>>

同步練習冊答案