如圖,在平面直角坐標(biāo)系xOy中,圓C:(x+1)2+y2=16,點(diǎn)F(1,0),E是圓C上的一個(gè)動(dòng)點(diǎn),EF的垂直平分線PQ與CE交于點(diǎn)B,與EF交于點(diǎn)D.

(1)求點(diǎn)B的軌跡方程;
(2)當(dāng)點(diǎn)D位于y軸的正半軸上時(shí),求直線PQ的方程;
(3)若G是圓C上的另一個(gè)動(dòng)點(diǎn),且滿足FG⊥FE,記線段EG的中點(diǎn)為M,試判斷線段OM的長(zhǎng)度是否為定值?若是,求出該定值;若不是,說(shuō)明理由.

(1)=1(2)x-2y+4=0(3)

解析

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知橢圓C的中心在原點(diǎn),一個(gè)焦點(diǎn)F(-2,0),且長(zhǎng)軸長(zhǎng)與短軸長(zhǎng)的比為,
(1)求橢圓C的方程;
(2)設(shè)點(diǎn)M(m,0)在橢圓C的長(zhǎng)軸上,設(shè)點(diǎn)P是橢圓上的任意一點(diǎn),若當(dāng)最小時(shí),點(diǎn)P恰好落在橢圓的右頂點(diǎn),求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,在平面直角坐標(biāo)系中,已知,,是橢圓上不同的三點(diǎn),,,在第三象限,線段的中點(diǎn)在直線上.

(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)求點(diǎn)C的坐標(biāo);
(3)設(shè)動(dòng)點(diǎn)在橢圓上(異于點(diǎn),)且直線PB,PC分別交直線OA,兩點(diǎn),證明為定值并求出該定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,F(xiàn)是中心在原點(diǎn)、焦點(diǎn)在x軸上的橢圓C的右焦點(diǎn),直線l:x=4是橢圓C的右準(zhǔn)線,F(xiàn)到直線l的距離等于3.

(1)求橢圓C的方程;
(2)點(diǎn)P是橢圓C上動(dòng)點(diǎn),PM⊥l,垂足為M.是否存在點(diǎn)P,使得△FPM為等腰三角形?若存在,求出點(diǎn)P的坐標(biāo);若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

在平面直角坐標(biāo)系xOy中,已知點(diǎn)A(-1,1),P是動(dòng)點(diǎn),且△POA的三邊所在直線的斜率滿足kOP+kOA=kPA.

(1)求點(diǎn)P的軌跡C的方程;
(2)若Q是軌跡C上異于點(diǎn)P的一個(gè)點(diǎn),且=λ,直線OP與QA交于點(diǎn)M,問:是否存在點(diǎn)P,使得△PQA和△PAM的面積滿足S△PQA=2S△PAM?若存在,求出點(diǎn)P的坐標(biāo);若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知橢圓=1(a>b>0)的離心率為,且過(guò)點(diǎn)P,A為上頂點(diǎn),F(xiàn)為右焦點(diǎn).點(diǎn)Q(0,t)是線段OA(除端點(diǎn)外)上的一個(gè)動(dòng)點(diǎn),

過(guò)Q作平行于x軸的直線交直線AP于點(diǎn)M,以QM為直徑的圓的圓心為N.
(1)求橢圓方程;
(2)若圓N與x軸相切,求圓N的方程;
(3)設(shè)點(diǎn)R為圓N上的動(dòng)點(diǎn),點(diǎn)R到直線PF的最大距離為d,求d的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,等邊三角形OAB的邊長(zhǎng)為8,且其三個(gè)頂點(diǎn)均在拋物線E:x2=2py(p>0)上.

(1)求拋物線E的方程;
(2)設(shè)動(dòng)直線l與拋物線E相切于點(diǎn)P,與直線y=-1相交于點(diǎn)Q.證明:以PQ為直徑的圓恒過(guò)y軸上某定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知雙曲線的離心率等于2,且經(jīng)過(guò)點(diǎn)M(-2,3),求雙曲線的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,在平面直角坐標(biāo)系xOy中,橢圓C的中心在坐標(biāo)原點(diǎn)O,右焦點(diǎn)為F.若C的右準(zhǔn)線l的方程為x=4,離心率e=.

(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)設(shè)點(diǎn)P為準(zhǔn)線l上一動(dòng)點(diǎn),且在x軸上方.圓M經(jīng)過(guò)O、F、P三點(diǎn),求當(dāng)圓心M到x軸的距離最小時(shí)圓M的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案