【題目】在某省舉辦的娛樂節(jié)目快樂向前沖的海選過程中設(shè)置了幾名導(dǎo)師,負責(zé)對每批初選合格的選手進行考核并評分,并將其得分作為該選手的成績,成績大于等于60分的選手定為合格選手,直接參加第二輪比賽,不超過40分的選手將直接被淘汰,成績在內(nèi)的選手可以參加待定賽,如果通過,也可以參加第二輪比賽

1已知成績合格的200名參賽選手成績的頻率分布直方圖如圖,估計這200名參賽選手的成績平均數(shù)和中位數(shù);

2根據(jù)已有的經(jīng)驗,參加待定賽的選手能夠進入第二輪比賽的概率如下表:

參賽選手成績所在區(qū)間

每名選手能夠進入第二輪的概率

假設(shè)每名選手能否通過待定賽相互獨立,現(xiàn)有4名選手的成績分別為單位:分43,45,52,58,記這4名選手在待定賽中通過的人數(shù)為隨機變量,求的分布列和數(shù)學(xué)期望

【答案】1;2分布列見解析,

【解析】

試題分析:1借助題設(shè)條件運用頻率分布直方圖及平均數(shù)公式求解;2借助題設(shè)運用數(shù)學(xué)期望的求解公式求解

試題解析:

1因為

所以

平均數(shù)

由圖可知前兩個矩形面積之和為05,則中位數(shù)為80

2根據(jù)題意知成績在內(nèi)選手各有2名,

則隨機變量的可能取值為0,1,2,3,4,

,

所以的分布列為:

0

1

2

3

4

所以

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,側(cè)面底面,,中點,底面是直角梯形,,,,

1求證:平面;

2求證:平面平面;

3設(shè)為棱上一點,,試確定的值使得二面角

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1的極值點;

2若曲線 上總存在不同兩點,使得曲線兩點處的切線互相平行,證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在一個不透明的箱子里放有四個質(zhì)地相同的小球,四個小球標(biāo)的號碼分別為1,1,2,3.現(xiàn)甲、乙兩位同學(xué)依次從箱子里隨機摸取一個球出來,記下號碼并放回.

)求甲、乙兩位同學(xué)所摸的球號碼相同的概率;

)求甲所摸的球號碼大于乙所摸的球號碼的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】以下有五個步驟:①撥號;②提起話筒(或免提功能);③開始通話或掛機(線路不通);④等復(fù)話方信號;⑤結(jié)束通話.試寫出一個打本地電話的算法________.(只寫編號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】ABC中,A0,1AB邊上的高線方程為x2y40,AC邊上的中線方程為2xy30,AB,BCAC邊所在的直線方程

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐PABCD的底面ABCD為直角梯形,其中BAADCDAD,CDAD2AB,PA底面ABCD,EPC的中點

1求證:BE平面PAD;

2AP2AB,求證:BE平面PCD

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】給出下列說法:

①綜合法是執(zhí)因?qū)Ч?②綜合法是順推法;③分析法是執(zhí)果索因法;④分析法是間接證法;⑤反證法是逆推法.其中正確說法的個數(shù)為

A. 2 B. 3

C. 4 D. 5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司為了解廣告投入對銷售收益的影響,在若干地區(qū)各投入萬元廣告費用,并將各地的銷售收益繪制成頻率分布直方圖如圖所示).由于工作人員操作失誤,橫軸的數(shù)據(jù)丟失,但可以確定橫軸是從開始計數(shù)的

根據(jù)頻率分布直方圖計算圖中各小長方形的寬度;

估計該公司投入萬元廣告費用之后,對應(yīng)銷售收益的平均值以各組的區(qū)間中點值代表該組的取值;

該公司按照類似的研究方法,測得另外一些數(shù)據(jù),并整理得到下表:

廣告投入x單位:萬元

1

2

3

4

5

銷售收益y單位:萬元

2

3

2

7

表中的數(shù)據(jù)顯示,之間存在線性相關(guān)關(guān)系,請將的結(jié)果填入空白欄,并計算關(guān)于的回歸方程

回歸直線的斜率和截距的最小二乘估計公式分別為

查看答案和解析>>

同步練習(xí)冊答案