【題目】已知函數(shù),其中.
(Ⅰ)若在區(qū)間上為增函數(shù),求的取值范圍;
(Ⅱ)當時,證明:;
(Ⅲ)當時,試判斷方程是否有實數(shù)解,并說明理由.
【答案】(Ⅰ);(Ⅱ)證明見解析;(Ⅲ)沒有實數(shù)解.
【解析】
試題分析:(Ⅰ)因為在區(qū)間上為增函數(shù)在上恒成立,在上恒成立;(Ⅱ)當時, 再利用導數(shù)工具得成立;(Ⅲ)由(Ⅱ)知, . 設利用導數(shù)工具求得, 即方程沒有實數(shù)解.
試題解析:函數(shù)定義域,.
(Ⅰ)因為在區(qū)間上為增函數(shù),所以在上恒成立,
即,在上恒成立,
則 ………………………………………………………4分
(Ⅱ)當時,,.
令,得.
令,得,所以函數(shù)在單調(diào)遞增.
令,得,所以函數(shù)在單調(diào)遞減.
所以,.
所以成立. …………………………………………………8分
(Ⅲ)由(Ⅱ)知, , 所以.
設所以.
令,得.
令,得,所以函數(shù)在單調(diào)遞增,
令,得,所以函數(shù)在單調(diào)遞減;
所以,, 即.
所以 ,即.
所以,方程沒有實數(shù)解. ……………………………………………12分
科目:高中數(shù)學 來源: 題型:
【題目】已知,其中.
(1)若是函數(shù)的極值點,求的值;
(2)求的單調(diào)區(qū)間;
(3)若在上的最大值是0,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列結(jié)論正確的是
①在某項測量中,測量結(jié)果服從正態(tài)分布.若在內(nèi)取值的概率為0.35,則在內(nèi)取值的概率為0.7;
②以模型去擬合一組數(shù)據(jù)時,為了求出回歸方程,設,其變換后得到線性回歸方程,則;
③已知命題“若函數(shù)在上是增函數(shù),則”的逆否命題是“若,則函數(shù)在上是減函數(shù)”是真命題;
④設常數(shù),則不等式對恒成立的充要條件是.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某企業(yè)開發(fā)一種新產(chǎn)品,現(xiàn)準備投入適當?shù)膹V告費,對產(chǎn)品進行促銷,在一年內(nèi),預計年銷量Q(萬件)與廣告費x(萬件)之間的函數(shù)關系為,已知生產(chǎn)此產(chǎn)品的年固定投入為3萬元,每年產(chǎn)1萬件此產(chǎn)品仍需要投入32萬元,若年銷售額為,而當年產(chǎn)銷量相等。
(1)試將年利潤P(萬件)表示為年廣告費x(萬元)的函數(shù);
(2)當年廣告費投入多少萬元時,企業(yè)年利潤最大?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】先后2次拋擲一枚骰子,將得到的點數(shù)分別記為.
(Ⅰ)求滿足的概率;
(Ⅱ)設三條線段的長分別為和5,求這三條線段能圍成等腰三角形(含等邊三角形)的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,兩點的坐標分別為,動點滿足:直線與直線的斜率之積為.
(1)求動點的軌跡方程;
(2)過點作兩條互相垂直的射線,與(1)的軌跡分別交于兩點,求面積的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知雙曲線的右頂點到其一條漸近線的距離等于,拋物線的焦點與雙曲線的右焦點重合,則拋物線上的動點到直線和的距離之和的最小值為__________.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】以邊長為4的等比三角形的頂點以及邊的中點為左、右焦點的橢圓過兩點.
(1)求該橢圓的標準方程;
(2)過點且軸不垂直的直線交橢圓于兩點,求證直線與的交點在一條直線上.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com