4.已知函數(shù)f(x)定義域?yàn)閇-1,5],部分對應(yīng)值如表,f(x)的導(dǎo)函數(shù)f′(x)的圖象如圖所示.
x-1045
f(x)1221
下列關(guān)于函數(shù)f(x)的命題:
①函數(shù)f(x)的極大值點(diǎn)有2個(gè);
②函數(shù)f(x)在[0,2]上是減函數(shù);
③若x∈[-1,t]時(shí),f(x)的最大值是2,則t的最大值為4;
④當(dāng)1<a<2時(shí),函數(shù)y=f(x)-a有4個(gè)零點(diǎn).
其中是真命題的是①②.(填寫序號(hào))

分析 先由導(dǎo)函數(shù)的圖象和原函數(shù)的關(guān)系畫出原函數(shù)的大致圖象,再借助與圖象和導(dǎo)函數(shù)的圖象,對四個(gè)命題,一一進(jìn)行驗(yàn)證,對于假命題采用舉反例的方法進(jìn)行排除即可得到答案.

解答 解:由導(dǎo)函數(shù)的圖象和原函數(shù)的關(guān)系得,原函數(shù)的大致圖象如圖:
由圖得:∵f(x)的極大值點(diǎn)有2個(gè),故①為真命題;
②為真命題.因?yàn)樵赱0,2]上導(dǎo)函數(shù)為負(fù),故原函數(shù)遞減;
由已知中y=f′(x)的圖象,及表中數(shù)據(jù)可得當(dāng)x=0或x=4時(shí),函數(shù)取最大值2,
若x∈[-1,t]時(shí),f(x)的最大值是2,那么0≤t≤5,故t的最大值為5,即③錯(cuò)誤;
④由于f(3)未知,故當(dāng)1<a<2時(shí),函數(shù)y=f(x)-a有4個(gè)零點(diǎn),不正確.
故答案為①②.

點(diǎn)評(píng) 本題主要考查導(dǎo)函數(shù)和原函數(shù)的單調(diào)性之間的關(guān)系.二者之間的關(guān)系是:導(dǎo)函數(shù)為正,原函數(shù)遞增;導(dǎo)函數(shù)為負(fù),原函數(shù)遞減.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.在y=sin|x|,y=|sinx|,y=sin(2x+$\frac{2π}{3}$),y=cos($\frac{x}{2}$+$\frac{2π}{3}$),y=cosx+|cosx|$y=tan\frac{1}{2}x+1$中,最小正周期為π的函數(shù)的個(gè)數(shù)是( 。
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.某三棱錐的三視圖如圖所示,則該三棱錐外接球的表面積為(  )
A.B.25πC.50πD.100π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知α是三角形的內(nèi)角,且sinαcosα=$\frac{1}{8}$,則cosα+sinα的值等于$\frac{\sqrt{5}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知集合A={x|log2x≤1},B={x|$\frac{1}{x}$>1},則A∩(∁RB)=( 。
A.(-∞,2]B.(0,1]C.[1,2]D.(2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.某幾何體的三視圖如圖所示(單位:cm),則該幾何體的側(cè)面PAB的面積是( 。
A.$\sqrt{7}$B.2C.1D.$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.關(guān)于下面等高條形圖說法正確的有(  )
A.在被調(diào)查的 x 1中,y 1占70%B.在被調(diào)查的 x 2中,y 2占20%
C.1與 y 1有關(guān)D.以上都不對

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.把離心率e=$\frac{{\sqrt{5}+1}}{2}$的雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$稱為黃金雙曲線.給出以下幾個(gè)說法:
①雙曲線x2-$\frac{{2{y^2}}}{{\sqrt{5}-1}}$=1是黃金雙曲線; 
②若雙曲線上一點(diǎn)P(x,y)到兩條漸近線的距離積等于$\frac{a^3}{c}$,則該雙曲線是黃金雙曲線;   
③若F1,F(xiàn)2為左右焦點(diǎn),A1,A2為左右頂點(diǎn),B1(0,b),B2(0,-b)且∠F1B1A2=900,則該雙曲線是黃金雙曲線;  
④.若直線l經(jīng)過右焦點(diǎn)F2交雙曲線于M,N兩點(diǎn),且MN⊥F1F2,∠MON=90°,則該雙曲線是黃金雙曲線;
其中正確命題的序號(hào)為②③④.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.如圖所示,在△ABC中,I為△ABC的內(nèi)心,AI交BC于D,交△ABC外接圓于E
求證:
(1)IE=EC
(2)IE2=ED•EA.

查看答案和解析>>

同步練習(xí)冊答案