分析 先判斷α為銳角,故cosα和sinα都是正值,根據(jù)cosα+sinα=$\sqrt{{(cosα+sinα)}^{2}}$=$\sqrt{1+2sinαcosα}$,計算求得結果.
解答 解:∵α是三角形的內(nèi)角,且sinαcosα=$\frac{1}{8}$,∴α為銳角,故cosα和sinα都是正值,
則cosα+sinα=$\sqrt{{(cosα+sinα)}^{2}}$=$\sqrt{1+2sinαcosα}$=$\sqrt{1+\frac{1}{4}}$=$\frac{\sqrt{5}}{2}$,
故答案為:$\frac{\sqrt{5}}{2}$.
點評 本題主要考查同角三角函數(shù)的基本關系的應用,屬于基礎題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | [-3,0) | B. | {-3,-2,-1} | C. | {-3,-2,-1,0,1} | D. | {-3,-2,-1,1} |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
等級 性別 | 較差 | 較好 | 合計 |
男生 | |||
女生 | |||
合計 |
P(K2≥k) | 0.050 | 0.010 | 0.001 | K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$ |
k | 3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
x | -1 | 0 | 4 | 5 |
f(x) | 1 | 2 | 2 | 1 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | ($\frac{\sqrt{3}}{3}$,$\frac{\sqrt{3}}{3}$,-$\frac{\sqrt{3}}{3}$) | B. | ($\frac{\sqrt{3}}{3}$,-$\frac{\sqrt{3}}{3}$,$\frac{\sqrt{3}}{3}$) | C. | (-$\frac{\sqrt{3}}{3}$,$\frac{\sqrt{3}}{3}$,$\frac{\sqrt{3}}{3}$) | D. | (-$\frac{\sqrt{3}}{3}$,-$\frac{\sqrt{3}}{3}$,-$\frac{\sqrt{3}}{3}$) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com