分析 可設(shè)AD=x,BD=y,CD=z,且∠ADB=30°,∠BDC=90°,運用余弦定理可得AB,BC,AC,再由三角形的性質(zhì):兩邊之和不小于第三邊,即可得證.
解答 證明:可設(shè)AD=x,BD=y,CD=z,
且∠ADB=30°,∠BDC=90°,
即有AB2=AD2+BD2-2AD•BDcos30°
=x2+y2-2xy•$\frac{\sqrt{3}}{2}$=x2+y2-$\sqrt{3}$xy,
BC2=BD2+CD2,即BC2=y2+z2,
AC2=AD2+CD2-2AD•CD•cos120°
=x2+z2-2xz•(-$\frac{1}{2}$)=x2+z2+xz,
由三角形的性質(zhì),可得AB+BC≥AC,
可得$\sqrt{{x}^{2}-\sqrt{3}xy+{y}^{2}}$+$\sqrt{{y}^{2}+{z}^{2}}$≥$\sqrt{{z}^{2}+zx+{x}^{2}}$.
點評 本題考查不等式的證明,注意運用構(gòu)造法,結(jié)合余弦定理,運用三角形的性質(zhì):兩邊之和不小于第三邊,考查推理能力,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | $\frac{2}{3}$ | C. | $\frac{3}{4}$ | D. | $\frac{4}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{b^2}{a^2}$ | B. | -$\frac{b^2}{a^2}$ | ||
C. | -$\frac{c^2}{a^2}$ | D. | 不確定,隨A,B的變化而變化 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 3 | B. | $\frac{9}{8}$ | C. | 1 | D. | $\frac{8}{9}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com