分析 (1)根據(jù)余弦定理和向量的數(shù)量積即可求出,
(2)根據(jù)向量的加減的幾何意義以及,向量的數(shù)量積,即可求出m的值,
(3)要使當(dāng)$\overrightarrow{PA}•\overrightarrow{PC}$最小,則P必在線段P2C上,根據(jù)二次函數(shù)的性質(zhì)即可求出.
解答 解:(1)原式=$\overrightarrow{A{P_1}}•(\overrightarrow{AB}+\overrightarrow{A{P_2}})=2{\overrightarrow{A{P_1}}^2}$,
在△ABP1中,由余弦定理,得$A{P_1}^2=1+\frac{1}{16}-2×1×\frac{1}{4}×cos{60^0}=\frac{13}{16}$,
所以$\overrightarrow{AB}•\overrightarrow{A{P_1}}+\overrightarrow{A{P_1}}•\overrightarrow{A{P_2}}$=$\frac{13}{8}$;
(2)易知$\overrightarrow{B{P_1}}=\frac{1}{4}\overrightarrow{BC}$,即$\overrightarrow{A{P_1}}-\overrightarrow{AB}=\frac{1}{4}(\overrightarrow{AC}-\overrightarrow{AB})$,即$\overrightarrow{A{P_1}}=\frac{3}{4}\overrightarrow{AB}+\frac{1}{4}\overrightarrow{AC}$,
因?yàn)镼為線段AP1上一點(diǎn),
設(shè)$\overrightarrow{AQ}=λ\overrightarrow{AP}=\frac{3}{4}λ\overrightarrow{AB}+\frac{1}{4}λ\overrightarrow{AC}=m\overrightarrow{AB}+\frac{1}{12}\overrightarrow{AC}$,
所以$m=\frac{1}{4}$;
(3)①當(dāng)P在線段BP2上時(shí)(不含P2),此時(shí)$\overrightarrow{PA}•\overrightarrow{PC}$>0,
②當(dāng)P在線段P2C上時(shí)(不含P2),$\overrightarrow{PA}•\overrightarrow{PC}$≤0,
要使當(dāng)$\overrightarrow{PA}•\overrightarrow{PC}$最小,則P必在線段P2C上,
設(shè)$|{\overrightarrow{PC}}|=x$,由于AP2⊥BC,則$\overrightarrow{PA}•\overrightarrow{PC}=|{\overrightarrow{PA}}|•|{\overrightarrow{PC}}|cos∠APC$=|$\overrightarrow{PC}$|2•(-|$\overrightarrow{P{P}_{2}}$|)=x(x-$\frac{1}{2}$)=x2-$\frac{1}{2}$x
當(dāng)$x=\frac{1}{4}$時(shí),即當(dāng)P為P3時(shí),$\overrightarrow{PA}•\overrightarrow{PC}$最小,此時(shí) 由余弦定理可求得$cos∠PAB=\frac{5}{26}\sqrt{13}$
點(diǎn)評(píng) 本題主要考查兩個(gè)向量的數(shù)量積的運(yùn)算,二次函數(shù)的性質(zhì),余弦定理,體現(xiàn)了轉(zhuǎn)化的數(shù)學(xué)思想,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 2+i | B. | 2-i | C. | -2-i | D. | -2+i |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | y=x+1 | B. | y=-x2 | C. | y=-$\frac{1}{x}$ | D. | y=x|x| |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 7盒 | B. | 8盒3 | C. | 9盒 | D. | 10盒 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1 | B. | π | C. | -π | D. | 沒(méi)有正確答案 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
廣告費(fèi)用x(萬(wàn)元) | 4 | 2 | 3 | 5 |
銷(xiāo)售額y(萬(wàn)元) | 49 | 26 | 39 | 54 |
A. | 63.6 萬(wàn)元 | B. | 65.5 萬(wàn)元 | C. | 67.7 萬(wàn)元 | D. | 72.0 萬(wàn)元 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com