11.設$f(x)=\left\{{\begin{array}{l}{π,x>0}\\{1,x=0}\\{-π,x<0}\end{array}}\right.,g(x)=\left\{{\begin{array}{l}{1,x為有理數(shù)}\\{{{log}_{\frac{1}{2}}}π,x為無理數(shù)}\end{array}}\right.$,則f(g(π))的值為(  )
A.1B.πC.D.沒有正確答案

分析 由函數(shù)性質得g(π)=$lo{g}_{\frac{1}{2}}π$,從而f(g(π))=f($lo{g}_{\frac{1}{2}}π$),由此能求出結果.

解答 解:∵$f(x)=\left\{{\begin{array}{l}{π,x>0}\\{1,x=0}\\{-π,x<0}\end{array}}\right.,g(x)=\left\{{\begin{array}{l}{1,x為有理數(shù)}\\{{{log}_{\frac{1}{2}}}π,x為無理數(shù)}\end{array}}\right.$,
∴g(π)=$lo{g}_{\frac{1}{2}}π$,
∴f(g(π))=f($lo{g}_{\frac{1}{2}}π$)=-π.
故選:C.

點評 本題考查函數(shù)值的求法,是基礎題,解題時要認真審題,注意函數(shù)性質的合理運用.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

1.如圖,正方體ABCD-A1B1C1D1中,O為底面ABCD的中心,M為棱BB1的中點,則下列結論中錯誤的是( 。
A.D1O∥平面A1BC1B.D1O⊥平面MAC
C.異面直線BC1與AC所成的角為60°D.MO與底面所成角為90°

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.設△ABC是邊長為1的正三角形,點P1,P2,P3四等分線段BC(如圖所示).
(1)求$\overrightarrow{AB}•\overrightarrow{A{P_1}}+\overrightarrow{A{P_1}}•\overrightarrow{A{P_2}}$的值;
(2)Q為線段AP1上一點,若$\overrightarrow{AQ}=m\overrightarrow{AB}+\frac{1}{12}\overrightarrow{AC}$,求實數(shù)m的值;
(3)P為邊BC上一動點,當$\overrightarrow{PA}•\overrightarrow{PC}$取最小值時,求cos∠PAB的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.下列四組函數(shù)中表示相等函數(shù)的是( 。
A.f(x)=$\sqrt{{x}^{2}}$,g(x)=xB.f(x)=x,g(x)=$\frac{{x}^{2}}{x}$
C.f(x)=lnx2,g(x)=2lnxD.f(x)=logaax(a>0,a≠1),g(x)=$\root{3}{{x}^{3}}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.如圖,在直三棱柱ABC-A1B1C1中,AB=1,AC=2,BC=$\sqrt{3}$,D、E分別是AC1和BB1的中點,則直線BF與平面BB1C1C所成的角為30°.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.函數(shù)f(x)=2x+5x的零點所在大致區(qū)間為( 。
A.(0,1)B.(1,2)C.(-1,0)D.(-2,-1)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.若($\root{n}{-3}$)n有意義,則n一定是(  )
A.正偶數(shù)B.正整數(shù)C.正奇數(shù)D.整數(shù)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.設Sn是等差數(shù)列{an}的前n項和,若$\frac{a_5}{a_3}$=2,則$\frac{S_9}{S_5}$=( 。
A.$\frac{18}{5}$B.$\frac{14}{5}$C.$\frac{12}{5}$D.$\frac{9}{5}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.函數(shù)y=ax-a與y=$\frac{a}{x}$(a≠0)在同一直角坐標系中的圖象可能是( 。
A.B.C.D.

查看答案和解析>>

同步練習冊答案