A. | 5 | B. | 1 | C. | 5$\sqrt{5}$ | D. | $\sqrt{5}$ |
分析 求出圓的圓心與半徑,雙曲線的漸近線方程,利用圓與雙曲線的漸近線相切列出方程求解即可.
解答 解:圓x2+(y-m)2=5的圓心(0,m),半徑為:$\sqrt{5}$,雙曲線x2-$\frac{{y}^{2}}{4}$=1的一條漸近線方程為:2x+y=0,圓x2+(y-m)2=5與雙曲線x2-$\frac{{y}^{2}}{4}$=1的漸近線相切,
可得:$\frac{|m|}{\sqrt{{2}^{2}+{1}^{2}}}=\sqrt{5}$,
解得m=±5,則正實數(shù)m=5.
故選:A.
點評 本題考查雙曲線與圓的位置關系的綜合應用,考查點到直線的距離公式的應用,考查轉(zhuǎn)化思想以及計算能力.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | l與C相離 | B. | l與C相切 | ||
C. | l與C相交 | D. | 以上三個選項均有可能 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 7 | B. | 8 | C. | $\frac{42}{5}$ | D. | 9 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{3}{2}$ | B. | $\frac{7}{4}$ | C. | $\frac{23}{12}$ | D. | $\frac{49}{24}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (-1,0)∪(0,1) | B. | (-∞,-1)∪(1,+∞) | C. | (-∞,-1)∪(0,1) | D. | (-1,0)∪(1,+∞) |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com